145 research outputs found

    Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation

    Full text link
    Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multi-view stereo (MVS). However, existing methods rely on the assumption that the corresponding points among different views share the same color, which may not always be true in practice. This may lead to unreliable self-supervised signal and harm the final reconstruction performance. To address the issue, we propose a framework integrated with more reliable supervision guided by semantic co-segmentation and data-augmentation. Specially, we excavate mutual semantic from multi-view images to guide the semantic consistency. And we devise effective data-augmentation mechanism which ensures the transformation robustness by treating the prediction of regular samples as pseudo ground truth to regularize the prediction of augmented samples. Experimental results on DTU dataset show that our proposed methods achieve the state-of-the-art performance among unsupervised methods, and even compete on par with supervised methods. Furthermore, extensive experiments on Tanks&Temples dataset demonstrate the effective generalization ability of the proposed method.Comment: This paper is accepted by AAAI-21 with a Distinguished Paper Awar

    Semi-supervised Deep Multi-view Stereo

    Full text link
    Significant progress has been witnessed in learning-based Multi-view Stereo (MVS) under supervised and unsupervised settings. To combine their respective merits in accuracy and completeness, meantime reducing the demand for expensive labeled data, this paper explores the problem of learning-based MVS in a semi-supervised setting that only a tiny part of the MVS data is attached with dense depth ground truth. However, due to huge variation of scenarios and flexible settings in views, it may break the basic assumption in classic semi-supervised learning, that unlabeled data and labeled data share the same label space and data distribution, named as semi-supervised distribution-gap ambiguity in the MVS problem. To handle these issues, we propose a novel semi-supervised distribution-augmented MVS framework, namely SDA-MVS. For the simple case that the basic assumption works in MVS data, consistency regularization encourages the model predictions to be consistent between original sample and randomly augmented sample. For further troublesome case that the basic assumption is conflicted in MVS data, we propose a novel style consistency loss to alleviate the negative effect caused by the distribution gap. The visual style of unlabeled sample is transferred to labeled sample to shrink the gap, and the model prediction of generated sample is further supervised with the label in original labeled sample. The experimental results in semi-supervised settings of multiple MVS datasets show the superior performance of the proposed method. With the same settings in backbone network, our proposed SDA-MVS outperforms its fully-supervised and unsupervised baselines.Comment: This paper is accepted in ACMMM-2023. The code is released at: https://github.com/ToughStoneX/Semi-MV
    • …
    corecore