2,549 research outputs found

    Neural Networks forBuilding Semantic Models and Knowledge Graphs

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenFutia, Giusepp

    Automatic & Semi-Automatic Methods for Supporting Ontology Change

    Get PDF

    Infrared: A Meta Bug Detector

    Full text link
    The recent breakthroughs in deep learning methods have sparked a wave of interest in learning-based bug detectors. Compared to the traditional static analysis tools, these bug detectors are directly learned from data, thus, easier to create. On the other hand, they are difficult to train, requiring a large amount of data which is not readily available. In this paper, we propose a new approach, called meta bug detection, which offers three crucial advantages over existing learning-based bug detectors: bug-type generic (i.e., capable of catching the types of bugs that are totally unobserved during training), self-explainable (i.e., capable of explaining its own prediction without any external interpretability methods) and sample efficient (i.e., requiring substantially less training data than standard bug detectors). Our extensive evaluation shows our meta bug detector (MBD) is effective in catching a variety of bugs including null pointer dereference, array index out-of-bound, file handle leak, and even data races in concurrent programs; in the process MBD also significantly outperforms several noteworthy baselines including Facebook Infer, a prominent static analysis tool, and FICS, the latest anomaly detection method

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    Semantic-guided predictive modeling and relational learning within industrial knowledge graphs

    Get PDF
    The ubiquitous availability of data in today’s manufacturing environments, mainly driven by the extended usage of software and built-in sensing capabilities in automation systems, enables companies to embrace more advanced predictive modeling and analysis in order to optimize processes and usage of equipment. While the potential insight gained from such analysis is high, it often remains untapped, since integration and analysis of data silos from different production domains requires high manual effort and is therefore not economic. Addressing these challenges, digital representations of production equipment, so-called digital twins, have emerged leading the way to semantic interoperability across systems in different domains. From a data modeling point of view, digital twins can be seen as industrial knowledge graphs, which are used as semantic backbone of manufacturing software systems and data analytics. Due to the prevalent historically grown and scattered manufacturing software system landscape that is comprising of numerous proprietary information models, data sources are highly heterogeneous. Therefore, there is an increasing need for semi-automatic support in data modeling, enabling end-user engineers to model their domain and maintain a unified semantic knowledge graph across the company. Once the data modeling and integration is done, further challenges arise, since there has been little research on how knowledge graphs can contribute to the simplification and abstraction of statistical analysis and predictive modeling, especially in manufacturing. In this thesis, new approaches for modeling and maintaining industrial knowledge graphs with focus on the application of statistical models are presented. First, concerning data modeling, we discuss requirements from several existing standard information models and analytic use cases in the manufacturing and automation system domains and derive a fragment of the OWL 2 language that is expressive enough to cover the required semantics for a broad range of use cases. The prototypical implementation enables domain end-users, i.e. engineers, to extend the basis ontology model with intuitive semantics. Furthermore it supports efficient reasoning and constraint checking via translation to rule-based representations. Based on these models, we propose an architecture for the end-user facilitated application of statistical models using ontological concepts and ontology-based data access paradigms. In addition to that we present an approach for domain knowledge-driven preparation of predictive models in terms of feature selection and show how schema-level reasoning in the OWL 2 language can be employed for this task within knowledge graphs of industrial automation systems. A production cycle time prediction model in an example application scenario serves as a proof of concept and demonstrates that axiomatized domain knowledge about features can give competitive performance compared to purely data-driven ones. In the case of high-dimensional data with small sample size, we show that graph kernels of domain ontologies can provide additional information on the degree of variable dependence. Furthermore, a special application of feature selection in graph-structured data is presented and we develop a method that allows to incorporate domain constraints derived from meta-paths in knowledge graphs in a branch-and-bound pattern enumeration algorithm. Lastly, we discuss maintenance of facts in large-scale industrial knowledge graphs focused on latent variable models for the automated population and completion of missing facts. State-of-the art approaches can not deal with time-series data in form of events that naturally occur in industrial applications. Therefore we present an extension of learning knowledge graph embeddings in conjunction with data in form of event logs. Finally, we design several use case scenarios of missing information and evaluate our embedding approach on data coming from a real-world factory environment. We draw the conclusion that industrial knowledge graphs are a powerful tool that can be used by end-users in the manufacturing domain for data modeling and model validation. They are especially suitable in terms of the facilitated application of statistical models in conjunction with background domain knowledge by providing information about features upfront. Furthermore, relational learning approaches showed great potential to semi-automatically infer missing facts and provide recommendations to production operators on how to keep stored facts in synch with the real world

    Enhancing online knowledge graph population with semantic knowledge

    Get PDF
    Knowledge Graphs (KG) are becoming essential to organize, represent and store the world’s knowledge, but they still rely heavily on humanly-curated structured data. Information Extraction (IE) tasks, like disambiguating entities and relations from unstructured text, are key to automate KG population. However, Natural Language Processing (NLP) methods alone can not guarantee the validity of the facts extracted and may introduce erroneous information into the KG. This work presents an end-to-end system that combines Semantic Knowledge and Validation techniques with NLP methods, to provide KG population of novel facts from clustered news events. The contributions of this paper are two-fold: First, we present a novel method for including entity-type knowledge into a Relation Extraction model, improving F1-Score over the baseline with TACRED and TypeRE datasets. Second, we increase the precision by adding data validation on top of the Relation Extraction method. These two contributions are combined in an industrial pipeline for automatic KG population over aggregated news, demonstrating increased data validity when performing online learning from unstructured web data. Finally, the TypeRE and AggregatedNewsRE datasets build to benchmark these results are also published to foster future research in this field.This work was partially supported by the Government of Catalonia under the industrial doctorate 2017 DI 011.Peer ReviewedPostprint (author's final draft
    corecore