250,268 research outputs found

    Learning temporal context for activity recognition

    Get PDF
    We investigate how incremental learning of long-term human activity patterns improves the accuracy of activity classification over time. Rather than trying to improve the classification methods themselves, we assume that they can take into account prior probabilities of activities occurring at a particular time. We use the classification results to build temporal models that can provide these priors to the classifiers. As our system gradually learns about typical patterns of human activities, the accuracy of activity classification improves, which results in even more accurate priors. Two datasets collected over several months containing hand-annotated activity in residential and office environments were chosen to evaluate the approach. Several types of temporal models were evaluated for each of these datasets. The results indicate that incremental learning of daily routines leads to a significant improvement in activity classification

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache

    Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition

    Get PDF
    Edge computing aims to integrate computing into everyday settings, enabling the system to be context-aware and private to the user. With the increasing success and popularity of deep learning methods, there is an increased demand to leverage these techniques in mobile and wearable computing scenarios. In this paper, we present an assessment of a deep human activity recognition system’s memory and execution time requirements, when implemented on a mid-range smartphone class hardware and the memory implications for embedded hardware. This paper presents the design of a convolutional neural network (CNN) in the context of human activity recognition scenario. Here, layers of CNN automate the feature learning and the influence of various hyper-parameters such as the number of filters and filter size on the performance of CNN. The proposed CNN showed increased robustness with better capability of detecting activities with temporal dependence compared to models using statistical machine learning techniques. The model obtained an accuracy of 96.4% in a five-class static and dynamic activity recognition scenario. We calculated the proposed model memory consumption and execution time requirements needed for using it on a mid-range smartphone. Per-channel quantization of weights and per-layer quantization of activation to 8-bits of precision post-training produces classification accuracy within 2% of floating-point networks for dense, convolutional neural network architecture. Almost all the size and execution time reduction in the optimized model was achieved due to weight quantization. We achieved more than four times reduction in model size when optimized to 8-bit, which ensured a feasible model capable of fast on-device inference

    Modeling Deep Context in Spatial and Temporal Domain

    Get PDF
    Context has been one of the most important aspects in computer vision researches because it provides useful guidance to solve variant tasks in both spatial and temporal domain. As the recent rise of deep learning methods, deep networks have shown impressive performances on many computer vision tasks. Model deep context explicitly and implicitly in deep networks can further boost the effectiveness and efficiency of deep models. In spatial domain, implicitly model context can be useful to learn discriminative texture representations. We present an effective deep fusion architecture to capture both the second order and first older statistics of texture features; Meanwhile, explicitly model context can also be important to challenging task such as fine-grained classification. We then present a deep multi-task network that explicitly captures geometry constraints by simultaneously conducting fine-grained classification and key-point localization. In temporal domain, explicitly model context can be crucial to activity recognition and localization. We present a temporal context network to explicitly capture relative context around a proposal, which samples two temporal scales pair-wisely for precise temporal localization of human activities; Meanwhile, implicitly model context can lead to better network architecture for video applications. We then present a temporal aggregation network that learns a deep hierarchical representation for capturing temporal consistency. Finally, we conduct research on jointly modeling context in both spatial and temporal domain for human action understanding, which requires to predict where, when and what a human action happens in a crowd scene. We present a decoupled framework that has dedicated branches for spatial localization and temporal recognition. Contexts in spatial and temporal branches are modeled explicitly and fused together later to generate final predictions

    Distinct Effects of Perceptual Quality on Auditory Word Recognition, Memory Formation and Recall in a Neural Model of Sequential Memory

    Get PDF
    Adults with sensory impairment, such as reduced hearing acuity, have impaired ability to recall identifiable words, even when their memory is otherwise normal. We hypothesize that poorer stimulus quality causes weaker activity in neurons responsive to the stimulus and more time to elapse between stimulus onset and identification. The weaker activity and increased delay to stimulus identification reduce the necessary strengthening of connections between neurons active before stimulus presentation and neurons active at the time of stimulus identification. We test our hypothesis through a biologically motivated computational model, which performs item recognition, memory formation and memory retrieval. In our simulations, spiking neurons are distributed into pools representing either items or context, in two separate, but connected winner-takes-all (WTA) networks. We include associative, Hebbian learning, by comparing multiple forms of spike-timing-dependent plasticity (STDP), which strengthen synapses between coactive neurons during stimulus identification. Synaptic strengthening by STDP can be sufficient to reactivate neurons during recall if their activity during a prior stimulus rose strongly and rapidly. We find that a single poor quality stimulus impairs recall of neighboring stimuli as well as the weak stimulus itself. We demonstrate that within the WTA paradigm of word recognition, reactivation of separate, connected sets of non-word, context cells permits reverse recall. Also, only with such coactive context cells, does slowing the rate of stimulus presentation increase recall probability. We conclude that significant temporal overlap of neural activity patterns, absent from individual WTA networks, is necessary to match behavioral data for word recall
    • …
    corecore