23,492 research outputs found

    Improving the utilization of training samples in visual recognition

    Full text link
    Recognition is a fundamental computer vision problem, in which training samples are used to learn models, that then assign labels to test samples. The utilization of training samples is of vital importance to visual recognition, which can be addressed by increasing the capability of the description methods and the model learning methods. Two visual recognition tasks namely object detection and action recognition and are considered in this thesis. Active learning utilizes selected subsets of the training dataset as training samples. Active learning methods select the most informative training samples in each iteration, and therefore require fewer training samples to attain comparable performance to passive learning methods. In this thesis, an active learning method for object detection that exploits the distribution of training samples is presented. Experiments show that the proposed method outperforms a passive learning method and a simple margin active learning method. Weakly supervised learning facilitates learning on training samples with weak labels. In this thesis, a weakly supervised object detection method is proposed to utilize training samples with probabilistic labels. Base detectors are used to create object proposals from training samples with weak labels. Then the object proposals are assigned estimated probabilistic labels. A Generalized Hough Transform based object detector is extended to utilize the object proposals with probabilistic labels as training samples. The proposed method is shown to outperform both a comparison method that assigns strong labels to object proposals, and a weakly supervised deformable part-based models method. The proposed method also attains comparable performance to supervised learning methods. Increasing the capability of the description method can improve the utilization of training samples. In this thesis, temporal pyramid histograms are proposed to address the problem of missing temporal information in the classical bag of features description method used in action recognition. Experiments show that the proposed description method outperforms the classical bag of features method in action recognition

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods

    Action Recognition from Single Timestamp Supervision in Untrimmed Videos

    Get PDF
    Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak video-level supervision has been successfully exploited for recognition in untrimmed videos, however it is challenged when the number of different actions in training videos increases. We propose a method that is supervised by single timestamps located around each action instance, in untrimmed videos. We replace expensive action bounds with sampling distributions initialised from these timestamps. We then use the classifier's response to iteratively update the sampling distributions. We demonstrate that these distributions converge to the location and extent of discriminative action segments. We evaluate our method on three datasets for fine-grained recognition, with increasing number of different actions per video, and show that single timestamps offer a reasonable compromise between recognition performance and labelling effort, performing comparably to full temporal supervision. Our update method improves top-1 test accuracy by up to 5.4%. across the evaluated datasets.Comment: CVPR 201

    AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

    Get PDF
    This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly. AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.Comment: To appear in CVPR 2018. Check dataset page https://research.google.com/ava/ for detail

    Learning to Localize and Align Fine-Grained Actions to Sparse Instructions

    Full text link
    Automatic generation of textual video descriptions that are time-aligned with video content is a long-standing goal in computer vision. The task is challenging due to the difficulty of bridging the semantic gap between the visual and natural language domains. This paper addresses the task of automatically generating an alignment between a set of instructions and a first person video demonstrating an activity. The sparse descriptions and ambiguity of written instructions create significant alignment challenges. The key to our approach is the use of egocentric cues to generate a concise set of action proposals, which are then matched to recipe steps using object recognition and computational linguistic techniques. We obtain promising results on both the Extended GTEA Gaze+ dataset and the Bristol Egocentric Object Interactions Dataset

    Extraction and Classification of Diving Clips from Continuous Video Footage

    Full text link
    Due to recent advances in technology, the recording and analysis of video data has become an increasingly common component of athlete training programmes. Today it is incredibly easy and affordable to set up a fixed camera and record athletes in a wide range of sports, such as diving, gymnastics, golf, tennis, etc. However, the manual analysis of the obtained footage is a time-consuming task which involves isolating actions of interest and categorizing them using domain-specific knowledge. In order to automate this kind of task, three challenging sub-problems are often encountered: 1) temporally cropping events/actions of interest from continuous video; 2) tracking the object of interest; and 3) classifying the events/actions of interest. Most previous work has focused on solving just one of the above sub-problems in isolation. In contrast, this paper provides a complete solution to the overall action monitoring task in the context of a challenging real-world exemplar. Specifically, we address the problem of diving classification. This is a challenging problem since the person (diver) of interest typically occupies fewer than 1% of the pixels in each frame. The model is required to learn the temporal boundaries of a dive, even though other divers and bystanders may be in view. Finally, the model must be sensitive to subtle changes in body pose over a large number of frames to determine the classification code. We provide effective solutions to each of the sub-problems which combine to provide a highly functional solution to the task as a whole. The techniques proposed can be easily generalized to video footage recorded from other sports.Comment: To appear at CVsports 201
    • …
    corecore