8,698 research outputs found

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Online Discrimination of Nonlinear Dynamics with Switching Differential Equations

    Full text link
    How to recognise whether an observed person walks or runs? We consider a dynamic environment where observations (e.g. the posture of a person) are caused by different dynamic processes (walking or running) which are active one at a time and which may transition from one to another at any time. For this setup, switching dynamic models have been suggested previously, mostly, for linear and nonlinear dynamics in discrete time. Motivated by basic principles of computations in the brain (dynamic, internal models) we suggest a model for switching nonlinear differential equations. The switching process in the model is implemented by a Hopfield network and we use parametric dynamic movement primitives to represent arbitrary rhythmic motions. The model generates observed dynamics by linearly interpolating the primitives weighted by the switching variables and it is constructed such that standard filtering algorithms can be applied. In two experiments with synthetic planar motion and a human motion capture data set we show that inference with the unscented Kalman filter can successfully discriminate several dynamic processes online

    State-Space Inference and Learning with Gaussian Processes

    No full text
    State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. Copyright 2010 by the authors

    GP-SUM. Gaussian Processes Filtering of non-Gaussian Beliefs

    Full text link
    This work studies the problem of stochastic dynamic filtering and state propagation with complex beliefs. The main contribution is GP-SUM, a filtering algorithm tailored to dynamic systems and observation models expressed as Gaussian Processes (GP), and to states represented as a weighted sum of Gaussians. The key attribute of GP-SUM is that it does not rely on linearizations of the dynamic or observation models, or on unimodal Gaussian approximations of the belief, hence enables tracking complex state distributions. The algorithm can be seen as a combination of a sampling-based filter with a probabilistic Bayes filter. On the one hand, GP-SUM operates by sampling the state distribution and propagating each sample through the dynamic system and observation models. On the other hand, it achieves effective sampling and accurate probabilistic propagation by relying on the GP form of the system, and the sum-of-Gaussian form of the belief. We show that GP-SUM outperforms several GP-Bayes and Particle Filters on a standard benchmark. We also demonstrate its use in a pushing task, predicting with experimental accuracy the naturally occurring non-Gaussian distributions.Comment: WAFR 2018, 16 pages, 7 figure
    corecore