3,012 research outputs found

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    Estimation of Human Body Shape and Posture Under Clothing

    Full text link
    Estimating the body shape and posture of a dressed human subject in motion represented as a sequence of (possibly incomplete) 3D meshes is important for virtual change rooms and security. To solve this problem, statistical shape spaces encoding human body shape and posture variations are commonly used to constrain the search space for the shape estimate. In this work, we propose a novel method that uses a posture-invariant shape space to model body shape variation combined with a skeleton-based deformation to model posture variation. Our method can estimate the body shape and posture of both static scans and motion sequences of dressed human body scans. In case of motion sequences, our method takes advantage of motion cues to solve for a single body shape estimate along with a sequence of posture estimates. We apply our approach to both static scans and motion sequences and demonstrate that using our method, higher fitting accuracy is achieved than when using a variant of the popular SCAPE model as statistical model.Comment: 23 pages, 11 figure

    A topological solution to object segmentation and tracking

    Full text link
    The world is composed of objects, the ground, and the sky. Visual perception of objects requires solving two fundamental challenges: segmenting visual input into discrete units, and tracking identities of these units despite appearance changes due to object deformation, changing perspective, and dynamic occlusion. Current computer vision approaches to segmentation and tracking that approach human performance all require learning, raising the question: can objects be segmented and tracked without learning? Here, we show that the mathematical structure of light rays reflected from environment surfaces yields a natural representation of persistent surfaces, and this surface representation provides a solution to both the segmentation and tracking problems. We describe how to generate this surface representation from continuous visual input, and demonstrate that our approach can segment and invariantly track objects in cluttered synthetic video despite severe appearance changes, without requiring learning.Comment: 21 pages, 6 main figures, 3 supplemental figures, and supplementary material containing mathematical proof
    • …
    corecore