30,770 research outputs found

    Learning attentions: residual attentional Siamese Network for high performance online visual tracking

    Get PDF
    Offline training for object tracking has recently shown great potentials in balancing tracking accuracy and speed. However, it is still difficult to adapt an offline trained model to a target tracked online. This work presents a Residual Attentional Siamese Network (RASNet) for high performance object tracking. The RASNet model reformulates the correlation filter within a Siamese tracking framework, and introduces different kinds of the attention mechanisms to adapt the model without updating the model online. In particular, by exploiting the offline trained general attention, the target adapted residual attention, and the channel favored feature attention, the RASNet not only mitigates the over-fitting problem in deep network training, but also enhances its discriminative capacity and adaptability due to the separation of representation learning and discriminator learning. The proposed deep architecture is trained from end to end and takes full advantage of the rich spatial temporal information to achieve robust visual tracking. Experimental results on two latest benchmarks, OTB-2015 and VOT2017, show that the RASNet tracker has the state-of-the-art tracking accuracy while runs at more than 80 frames per second

    Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism

    Full text link
    In this paper, we propose a CNN-based framework for online MOT. This framework utilizes the merits of single object trackers in adapting appearance models and searching for target in the next frame. Simply applying single object tracker for MOT will encounter the problem in computational efficiency and drifted results caused by occlusion. Our framework achieves computational efficiency by sharing features and using ROI-Pooling to obtain individual features for each target. Some online learned target-specific CNN layers are used for adapting the appearance model for each target. In the framework, we introduce spatial-temporal attention mechanism (STAM) to handle the drift caused by occlusion and interaction among targets. The visibility map of the target is learned and used for inferring the spatial attention map. The spatial attention map is then applied to weight the features. Besides, the occlusion status can be estimated from the visibility map, which controls the online updating process via weighted loss on training samples with different occlusion statuses in different frames. It can be considered as temporal attention mechanism. The proposed algorithm achieves 34.3% and 46.0% in MOTA on challenging MOT15 and MOT16 benchmark dataset respectively.Comment: Accepted at International Conference on Computer Vision (ICCV) 201
    • …
    corecore