3,430 research outputs found

    Second-order Temporal Pooling for Action Recognition

    Full text link
    Deep learning models for video-based action recognition usually generate features for short clips (consisting of a few frames); such clip-level features are aggregated to video-level representations by computing statistics on these features. Typically zero-th (max) or the first-order (average) statistics are used. In this paper, we explore the benefits of using second-order statistics. Specifically, we propose a novel end-to-end learnable feature aggregation scheme, dubbed temporal correlation pooling that generates an action descriptor for a video sequence by capturing the similarities between the temporal evolution of clip-level CNN features computed across the video. Such a descriptor, while being computationally cheap, also naturally encodes the co-activations of multiple CNN features, thereby providing a richer characterization of actions than their first-order counterparts. We also propose higher-order extensions of this scheme by computing correlations after embedding the CNN features in a reproducing kernel Hilbert space. We provide experiments on benchmark datasets such as HMDB-51 and UCF-101, fine-grained datasets such as MPII Cooking activities and JHMDB, as well as the recent Kinetics-600. Our results demonstrate the advantages of higher-order pooling schemes that when combined with hand-crafted features (as is standard practice) achieves state-of-the-art accuracy.Comment: Accepted in the International Journal of Computer Vision (IJCV

    RGB-T Tracking Based on Mixed Attention

    Full text link
    RGB-T tracking involves the use of images from both visible and thermal modalities. The primary objective is to adaptively leverage the relatively dominant modality in varying conditions to achieve more robust tracking compared to single-modality tracking. An RGB-T tracker based on mixed attention mechanism to achieve complementary fusion of modalities (referred to as MACFT) is proposed in this paper. In the feature extraction stage, we utilize different transformer backbone branches to extract specific and shared information from different modalities. By performing mixed attention operations in the backbone to enable information interaction and self-enhancement between the template and search images, it constructs a robust feature representation that better understands the high-level semantic features of the target. Then, in the feature fusion stage, a modality-adaptive fusion is achieved through a mixed attention-based modality fusion network, which suppresses the low-quality modality noise while enhancing the information of the dominant modality. Evaluation on multiple RGB-T public datasets demonstrates that our proposed tracker outperforms other RGB-T trackers on general evaluation metrics while also being able to adapt to longterm tracking scenarios.Comment: 14 pages, 10 figure

    Dense Feature Aggregation and Pruning for RGBT Tracking

    Full text link
    How to perform effective information fusion of different modalities is a core factor in boosting the performance of RGBT tracking. This paper presents a novel deep fusion algorithm based on the representations from an end-to-end trained convolutional neural network. To deploy the complementarity of features of all layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in each modality. In different modalities, we propose to prune the densely aggregated features of all modalities in a collaborative way. In a specific, we employ the operations of global average pooling and weighted random selection to perform channel scoring and selection, which could remove redundant and noisy features to achieve more robust feature representation. Experimental results on two RGBT tracking benchmark datasets suggest that our tracker achieves clear state-of-the-art against other RGB and RGBT tracking methods.Comment: arXiv admin note: text overlap with arXiv:1811.0985

    Tracking by 3D Model Estimation of Unknown Objects in Videos

    Full text link
    Most model-free visual object tracking methods formulate the tracking task as object location estimation given by a 2D segmentation or a bounding box in each video frame. We argue that this representation is limited and instead propose to guide and improve 2D tracking with an explicit object representation, namely the textured 3D shape and 6DoF pose in each video frame. Our representation tackles a complex long-term dense correspondence problem between all 3D points on the object for all video frames, including frames where some points are invisible. To achieve that, the estimation is driven by re-rendering the input video frames as well as possible through differentiable rendering, which has not been used for tracking before. The proposed optimization minimizes a novel loss function to estimate the best 3D shape, texture, and 6DoF pose. We improve the state-of-the-art in 2D segmentation tracking on three different datasets with mostly rigid objects
    • …
    corecore