1,927 research outputs found

    Surrogate Outcomes and Transportability

    Full text link
    Identification of causal effects is one of the most fundamental tasks of causal inference. We consider an identifiability problem where some experimental and observational data are available but neither data alone is sufficient for the identification of the causal effect of interest. Instead of the outcome of interest, surrogate outcomes are measured in the experiments. This problem is a generalization of identifiability using surrogate experiments and we label it as surrogate outcome identifiability. We show that the concept of transportability provides a sufficient criteria for determining surrogate outcome identifiability for a large class of queries.Comment: This is the version published in the International Journal of Approximate Reasonin

    A quantum causal discovery algorithm

    Full text link
    Finding a causal model for a set of classical variables is now a well-established task---but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally-ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm provides a first step towards more general methods for quantum causal discovery.Comment: 11 pages, 10 figures, revised to match published versio

    Online Domain Adaptation for Multi-Object Tracking

    Full text link
    Automatically detecting, labeling, and tracking objects in videos depends first and foremost on accurate category-level object detectors. These might, however, not always be available in practice, as acquiring high-quality large scale labeled training datasets is either too costly or impractical for all possible real-world application scenarios. A scalable solution consists in re-using object detectors pre-trained on generic datasets. This work is the first to investigate the problem of on-line domain adaptation of object detectors for causal multi-object tracking (MOT). We propose to alleviate the dataset bias by adapting detectors from category to instances, and back: (i) we jointly learn all target models by adapting them from the pre-trained one, and (ii) we also adapt the pre-trained model on-line. We introduce an on-line multi-task learning algorithm to efficiently share parameters and reduce drift, while gradually improving recall. Our approach is applicable to any linear object detector, and we evaluate both cheap "mini-Fisher Vectors" and expensive "off-the-shelf" ConvNet features. We quantitatively measure the benefit of our domain adaptation strategy on the KITTI tracking benchmark and on a new dataset (PASCAL-to-KITTI) we introduce to study the domain mismatch problem in MOT.Comment: To appear at BMVC 201
    • …
    corecore