7,431 research outputs found

    Saliency Supervision: An Intuitive and Effective Approach for Pain Intensity Regression

    Full text link
    Getting pain intensity from face images is an important problem in autonomous nursing systems. However, due to the limitation in data sources and the subjectiveness in pain intensity values, it is hard to adopt modern deep neural networks for this problem without domain-specific auxiliary design. Inspired by human vision priori, we propose a novel approach called saliency supervision, where we directly regularize deep networks to focus on facial area that is discriminative for pain regression. Through alternative training between saliency supervision and global loss, our method can learn sparse and robust features, which is proved helpful for pain intensity regression. We verified saliency supervision with face-verification network backbone on the widely-used dataset, and achieved state-of-art performance without bells and whistles. Our saliency supervision is intuitive in spirit, yet effective in performance. We believe such saliency supervision is essential in dealing with ill-posed datasets, and has potential in a wide range of vision tasks

    Half-CNN: A General Framework for Whole-Image Regression

    Full text link
    The Convolutional Neural Network (CNN) has achieved great success in image classification. The classification model can also be utilized at image or patch level for many other applications, such as object detection and segmentation. In this paper, we propose a whole-image CNN regression model, by removing the full connection layer and training the network with continuous feature maps. This is a generic regression framework that fits many applications. We demonstrate this method through two tasks: simultaneous face detection & segmentation, and scene saliency prediction. The result is comparable with other models in the respective fields, using only a small scale network. Since the regression model is trained on corresponding image / feature map pairs, there are no requirements on uniform input size as opposed to the classification model. Our framework avoids classifier design, a process that may introduce too much manual intervention in model development. Yet, it is highly correlated to the classification network and offers some in-deep review of CNN structures

    Saliency Prediction in the Deep Learning Era: Successes, Limitations, and Future Challenges

    Full text link
    Visual saliency models have enjoyed a big leap in performance in recent years, thanks to advances in deep learning and large scale annotated data. Despite enormous effort and huge breakthroughs, however, models still fall short in reaching human-level accuracy. In this work, I explore the landscape of the field emphasizing on new deep saliency models, benchmarks, and datasets. A large number of image and video saliency models are reviewed and compared over two image benchmarks and two large scale video datasets. Further, I identify factors that contribute to the gap between models and humans and discuss remaining issues that need to be addressed to build the next generation of more powerful saliency models. Some specific questions that are addressed include: in what ways current models fail, how to remedy them, what can be learned from cognitive studies of attention, how explicit saliency judgments relate to fixations, how to conduct fair model comparison, and what are the emerging applications of saliency models

    FaceSpoof Buster: a Presentation Attack Detector Based on Intrinsic Image Properties and Deep Learning

    Full text link
    Nowadays, the adoption of face recognition for biometric authentication systems is usual, mainly because this is one of the most accessible biometric modalities. Techniques that rely on trespassing these kind of systems by using a forged biometric sample, such as a printed paper or a recorded video of a genuine access, are known as presentation attacks, but may be also referred in the literature as face spoofing. Presentation attack detection is a crucial step for preventing this kind of unauthorized accesses into restricted areas and/or devices. In this paper, we propose a novel approach which relies in a combination between intrinsic image properties and deep neural networks to detect presentation attack attempts. Our method explores depth, salience and illumination maps, associated with a pre-trained Convolutional Neural Network in order to produce robust and discriminant features. Each one of these properties are individually classified and, in the end of the process, they are combined by a meta learning classifier, which achieves outstanding results on the most popular datasets for PAD. Results show that proposed method is able to overpass state-of-the-art results in an inter-dataset protocol, which is defined as the most challenging in the literature.Comment: 7 pages, 1 figure, 7 table

    Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

    Full text link
    Over the past few years, deep neural networks (DNNs) have exhibited great success in predicting the saliency of images. However, there are few works that apply DNNs to predict the saliency of generic videos. In this paper, we propose a novel DNN-based video saliency prediction method. Specifically, we establish a large-scale eye-tracking database of videos (LEDOV), which provides sufficient data to train the DNN models for predicting video saliency. Through the statistical analysis of our LEDOV database, we find that human attention is normally attracted by objects, particularly moving objects or the moving parts of objects. Accordingly, we propose an object-to-motion convolutional neural network (OM-CNN) to learn spatio-temporal features for predicting the intra-frame saliency via exploring the information of both objectness and object motion. We further find from our database that there exists a temporal correlation of human attention with a smooth saliency transition across video frames. Therefore, we develop a two-layer convolutional long short-term memory (2C-LSTM) network in our DNN-based method, using the extracted features of OM-CNN as the input. Consequently, the inter-frame saliency maps of videos can be generated, which consider the transition of attention across video frames. Finally, the experimental results show that our method advances the state-of-the-art in video saliency prediction.Comment: Jiang, Lai and Xu, Mai and Liu, Tie and Qiao, Minglang and Wang, Zulin; DeepVS: A Deep Learning Based Video Saliency Prediction Approach;The European Conference on Computer Vision (ECCV); September 201

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    Semantic and Contrast-Aware Saliency

    Full text link
    In this paper, we proposed an integrated model of semantic-aware and contrast-aware saliency combining both bottom-up and top-down cues for effective saliency estimation and eye fixation prediction. The proposed model processes visual information using two pathways. The first pathway aims to capture the attractive semantic information in images, especially for the presence of meaningful objects and object parts such as human faces. The second pathway is based on multi-scale on-line feature learning and information maximization, which learns an adaptive sparse representation for the input and discovers the high contrast salient patterns within the image context. The two pathways characterize both long-term and short-term attention cues and are integrated dynamically using maxima normalization. We investigate two different implementations of the semantic pathway including an End-to-End deep neural network solution and a dynamic feature integration solution, resulting in the SCA and SCAFI model respectively. Experimental results on artificial images and 5 popular benchmark datasets demonstrate the superior performance and better plausibility of the proposed model over both classic approaches and recent deep models.Comment: arXiv admin note: text overlap with arXiv:1710.04071 by other author

    Richer and Deeper Supervision Network for Salient Object Detection

    Full text link
    Recent Salient Object Detection (SOD) systems are mostly based on Convolutional Neural Networks (CNNs). Specifically, Deeply Supervised Saliency (DSS) system has shown it is very useful to add short connections to the network and supervising on the side output. In this work, we propose a new SOD system which aims at designing a more efficient and effective way to pass back global information. Richer and Deeper Supervision (RDS) is applied to better combine features from each side output without demanding much extra computational space. Meanwhile, the backbone network used for SOD is normally pre-trained on the object classification dataset, ImageNet. But the pre-trained model has been trained on cropped images in order to only focus on distinguishing features within the region of the object. But the ignored background information is also significant in the task of SOD. We try to solve this problem by introducing the training data designed for object detection. A coarse global information is learned based on an entire image with its bounding box before training on the SOD dataset. The large-scale of object images can slightly improve the performance of SOD. Our experiment shows the proposed RDS network achieves the state-of-the-art results on five public SOD datasets

    Multi-source weak supervision for saliency detection

    Full text link
    The high cost of pixel-level annotations makes it appealing to train saliency detection models with weak supervision. However, a single weak supervision source usually does not contain enough information to train a well-performing model. To this end, we propose a unified framework to train saliency detection models with diverse weak supervision sources. In this paper, we use category labels, captions, and unlabelled data for training, yet other supervision sources can also be plugged into this flexible framework. We design a classification network (CNet) and a caption generation network (PNet), which learn to predict object categories and generate captions, respectively, meanwhile highlight the most important regions for corresponding tasks. An attention transfer loss is designed to transmit supervision signal between networks, such that the network designed to be trained with one supervision source can benefit from another. An attention coherence loss is defined on unlabelled data to encourage the networks to detect generally salient regions instead of task-specific regions. We use CNet and PNet to generate pixel-level pseudo labels to train a saliency prediction network (SNet). During the testing phases, we only need SNet to predict saliency maps. Experiments demonstrate the performance of our method compares favourably against unsupervised and weakly supervised methods and even some supervised methods.Comment: cvpr201

    Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

    Full text link
    Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.Comment: 35 pages, 15 figure
    • …
    corecore