1,798 research outputs found

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    A Praise for Defensive Programming: Leveraging Uncertainty for Effective Malware Mitigation

    Full text link
    A promising avenue for improving the effectiveness of behavioral-based malware detectors would be to combine fast traditional machine learning detectors with high-accuracy, but time-consuming deep learning models. The main idea would be to place software receiving borderline classifications by traditional machine learning methods in an environment where uncertainty is added, while software is analyzed by more time-consuming deep learning models. The goal of uncertainty would be to rate-limit actions of potential malware during the time consuming deep analysis. In this paper, we present a detailed description of the analysis and implementation of CHAMELEON, a framework for realizing this uncertain environment for Linux. CHAMELEON offers two environments for software: (i) standard - for any software identified as benign by conventional machine learning methods and (ii) uncertain - for software receiving borderline classifications when analyzed by these conventional machine learning methods. The uncertain environment adds obstacles to software execution through random perturbations applied probabilistically on selected system calls. We evaluated CHAMELEON with 113 applications and 100 malware samples for Linux. Our results showed that at threshold 10%, intrusive and non-intrusive strategies caused approximately 65% of malware to fail accomplishing their tasks, while approximately 30% of the analyzed benign software to meet with various levels of disruption. With a dynamic, per-system call threshold, CHAMELEON caused 92% of the malware to fail, and only 10% of the benign software to be disrupted. We also found that I/O-bound software was three times more affected by uncertainty than CPU-bound software. Further, we analyzed the logs of software crashed with non-intrusive strategies, and found that some crashes are due to the software bugs

    Design and Analysis of a Dynamically Configured Log-based Distributed Security Event Detection Methodology

    Get PDF
    Military and defense organizations rely upon the security of data stored in, and communicated through, their cyber infrastructure to fulfill their mission objectives. It is essential to identify threats to the cyber infrastructure in a timely manner, so that mission risks can be recognized and mitigated. Centralized event logging and correlation is a proven method for identifying threats to cyber resources. However, centralized event logging is inflexible and does not scale well, because it consumes excessive network bandwidth and imposes significant storage and processing requirements on the central event log server. In this paper, we present a flexible, distributed event correlation system designed to overcome these limitations by distributing the event correlation workload across the network of event-producing systems. To demonstrate the utility of the methodology, we model and simulate centralized, decentralized, and hybrid log analysis environments over three accountability levels and compare their performance in terms of detection capability, network bandwidth utilization, database query efficiency, and configurability. The results show that when compared to centralized event correlation, dynamically configured distributed event correlation provides increased flexibility, a significant reduction in network traffic in low and medium accountability environments, and a decrease in database query execution time in the high-accountability case

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI
    corecore