55,805 research outputs found

    Pairwise meta-rules for better meta-learning-based algorithm ranking

    Get PDF
    In this paper, we present a novel meta-feature generation method in the context of meta-learning, which is based on rules that compare the performance of individual base learners in a one-against-one manner. In addition to these new meta-features, we also introduce a new meta-learner called Approximate Ranking Tree Forests (ART Forests) that performs very competitively when compared with several state-of-the-art meta-learners. Our experimental results are based on a large collection of datasets and show that the proposed new techniques can improve the overall performance of meta-learning for algorithm ranking significantly. A key point in our approach is that each performance figure of any base learner for any specific dataset is generated by optimising the parameters of the base learner separately for each dataset

    Modelling fish habitat preference with a genetic algorithm-optimized Takagi-Sugeno model based on pairwise comparisons

    Get PDF
    Species-environment relationships are used for evaluating the current status of target species and the potential impact of natural or anthropogenic changes of their habitat. Recent researches reported that the results are strongly affected by the quality of a data set used. The present study attempted to apply pairwise comparisons to modelling fish habitat preference with Takagi-Sugeno-type fuzzy habitat preference models (FHPMs) optimized by a genetic algorithm (GA). The model was compared with the result obtained from the FHPM optimized based on mean squared error (MSE). Three independent data sets were used for training and testing of these models. The FHPMs based on pairwise comparison produced variable habitat preference curves from 20 different initial conditions in the GA. This could be partially ascribed to the optimization process and the regulations assigned. This case study demonstrates applicability and limitations of pairwise comparison-based optimization in an FHPM. Future research should focus on a more flexible learning process to make a good use of the advantages of pairwise comparisons

    TransNFCM: Translation-Based Neural Fashion Compatibility Modeling

    Full text link
    Identifying mix-and-match relationships between fashion items is an urgent task in a fashion e-commerce recommender system. It will significantly enhance user experience and satisfaction. However, due to the challenges of inferring the rich yet complicated set of compatibility patterns in a large e-commerce corpus of fashion items, this task is still underexplored. Inspired by the recent advances in multi-relational knowledge representation learning and deep neural networks, this paper proposes a novel Translation-based Neural Fashion Compatibility Modeling (TransNFCM) framework, which jointly optimizes fashion item embeddings and category-specific complementary relations in a unified space via an end-to-end learning manner. TransNFCM places items in a unified embedding space where a category-specific relation (category-comp-category) is modeled as a vector translation operating on the embeddings of compatible items from the corresponding categories. By this way, we not only capture the specific notion of compatibility conditioned on a specific pair of complementary categories, but also preserve the global notion of compatibility. We also design a deep fashion item encoder which exploits the complementary characteristic of visual and textual features to represent the fashion products. To the best of our knowledge, this is the first work that uses category-specific complementary relations to model the category-aware compatibility between items in a translation-based embedding space. Extensive experiments demonstrate the effectiveness of TransNFCM over the state-of-the-arts on two real-world datasets.Comment: Accepted in AAAI 2019 conferenc
    corecore