3,103 research outputs found

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    Statistical methods used for intrusion detection

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 58-64)Text in English; Abstract: Turkish and Englishx, 71 leavesComputer networks are being attacked everyday. Intrusion detection systems are used to detect and reduce effects of these attacks. Signature based intrusion detection systems can only identify known attacks and are ineffective against novel and unknown attacks. Intrusion detection using anomaly detection aims to detect unknown attacks and there exist algorithms developed for this goal. In this study, performance of five anomaly detection algorithms and a signature based intrusion detection system is demonstrated on synthetic and real data sets. A portion of attacks are detected using Snort and SPADE algorithms. PHAD and other algorithms could not detect considerable portion of the attacks in tests due to lack of sufficiently long enough training data

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed

    Anomaly detection in computer networks using hierarchically organized teams of learning automata

    Get PDF
    With the increasing number of computer systems connected to the Internet, security becomes a critical issue. To combat this problem, several attack detection methods have emerged in the past years, such as the rule based Intrusion Detection System (IDS) Snort - or anomaly based alternatives that are able to detect novel attacks without any prior knowledge about them. Most current anomaly based IDS require labeled attacks or extensively filtered training data, such that certain attack types, which generate large amounts of noise in terms of false positives, are effectively removed. This thesis describes a novel anomaly based scheme for detecting attacks, using frequent itemset mining, without performing extensive filtering of the input data. In brief, the scheme, which is named the Grimstad Data Classifier (GRIDAC), uses teams of hierarchically organized Learning Automata to generate a rule tree with a set of linked nodes – where the granularity of each node increases along with the current level in the tree. In turn, GRIDAC was implemented as an anomaly based IDS called Inspectobot, and evaluated using the 1999 DARPA IDS Evaluation Sets. At best, the prototype was able to detect 51 out of 62 attacks in the 1999 DARPA IDS Evaluation Sets with 56 false alarms, giving a detection rate of 82 %, after training on one week of attack-free traffic, and classifying another full week of data containing attacks. The empirical results are quite conclusive, demonstrating that the prototype shows an excellent ability to mine frequent itemsets from network packets, such that normal behavior can be modeled. With an average detection rate of 73 % of all attacks in the DARPA set, and a fairly low amount of false positives, it is also shown that Inspectobot can be used for IDS purposes. In its current state, Inspectobot requires a high processing capacity to perform the rule matching. When compared to the popular IDS Snort, it is currently not as useful outside of a testbed environment. Nonetheless, the scheme has the potential of serving as a complementary anomaly based IDS alongside Snort for detecting novel attacks, given a more optimized implementation

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged
    • …
    corecore