1,251 research outputs found

    Learning Robot Control using a Hierarchical SOM-based Encoding

    Get PDF
    Hierarchical representations and modeling of sensorimotor observations is a fundamental approach for the development of scalable robot control strategies. Previously, we introduced the novel Hierarchical Self-Organizing Map-based Encoding algorithm (HSOME) that is based on a computational model of infant cognition. Each layer is a temporally augmented SOM and every node updates a decaying activation value. The bottom level encodes sensori-motor instances while their temporal associations are hierarchically built on the layers above. In the past, HSOME has shown to support hierarchical encoding of sequential sensor-actuator observations both in abstract domains and real humanoid robots. Two novel features are presented here starting with the novel skill acquisition in the complex domain of learning a double tap tactile gesture between two humanoid robots. During reproduction, the robot can either perform a double tap or prioritize to receive a higher reward by performing a single tap instead. Secondly, HSOME has been extended to recall past observations and reproduce rhythmic patterns in the absence of input relevant to the joints by priming initially the reproduction of specific skills with an input. We also demonstrate in simulation how a complex behavior emerges from the automatic reuse of distinct oscillatory swimming demonstrations of a robotic salamander

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus

    Unsupervised Temporospatial Neural Architecture for Sensorimotor Map Learning

    Get PDF
    Peer reviewedPostprin

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Efficient Intrinsically Motivated Robotic Grasping with Learning-Adaptive Imagination in Latent Space

    Full text link
    Combining model-based and model-free deep reinforcement learning has shown great promise for improving sample efficiency on complex control tasks while still retaining high performance. Incorporating imagination is a recent effort in this direction inspired by human mental simulation of motor behavior. We propose a learning-adaptive imagination approach which, unlike previous approaches, takes into account the reliability of the learned dynamics model used for imagining the future. Our approach learns an ensemble of disjoint local dynamics models in latent space and derives an intrinsic reward based on learning progress, motivating the controller to take actions leading to data that improves the models. The learned models are used to generate imagined experiences, augmenting the training set of real experiences. We evaluate our approach on learning vision-based robotic grasping and show that it significantly improves sample efficiency and achieves near-optimal performance in a sparse reward environment.Comment: In: Proceedings of the Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob), Oslo, Norway, Aug. 19-22, 201

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented
    • …
    corecore