14,873 research outputs found

    Analysing Errors of Open Information Extraction Systems

    Full text link
    We report results on benchmarking Open Information Extraction (OIE) systems using RelVis, a toolkit for benchmarking Open Information Extraction systems. Our comprehensive benchmark contains three data sets from the news domain and one data set from Wikipedia with overall 4522 labeled sentences and 11243 binary or n-ary OIE relations. In our analysis on these data sets we compared the performance of four popular OIE systems, ClausIE, OpenIE 4.2, Stanford OpenIE and PredPatt. In addition, we evaluated the impact of five common error classes on a subset of 749 n-ary tuples. From our deep analysis we unreveal important research directions for a next generation of OIE systems.Comment: Accepted at Building Linguistically Generalizable NLP Systems at EMNLP 201

    Random Prism: An Alternative to Random Forests.

    Get PDF
    Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting

    Integrative Windowing

    Full text link
    In this paper we re-investigate windowing for rule learning algorithms. We show that, contrary to previous results for decision tree learning, windowing can in fact achieve significant run-time gains in noise-free domains and explain the different behavior of rule learning algorithms by the fact that they learn each rule independently. The main contribution of this paper is integrative windowing, a new type of algorithm that further exploits this property by integrating good rules into the final theory right after they have been discovered. Thus it avoids re-learning these rules in subsequent iterations of the windowing process. Experimental evidence in a variety of noise-free domains shows that integrative windowing can in fact achieve substantial run-time gains. Furthermore, we discuss the problem of noise in windowing and present an algorithm that is able to achieve run-time gains in a set of experiments in a simple domain with artificial noise.Comment: See http://www.jair.org/ for any accompanying file

    Unsupervised Context-Sensitive Spelling Correction of English and Dutch Clinical Free-Text with Word and Character N-Gram Embeddings

    Full text link
    We present an unsupervised context-sensitive spelling correction method for clinical free-text that uses word and character n-gram embeddings. Our method generates misspelling replacement candidates and ranks them according to their semantic fit, by calculating a weighted cosine similarity between the vectorized representation of a candidate and the misspelling context. To tune the parameters of this model, we generate self-induced spelling error corpora. We perform our experiments for two languages. For English, we greatly outperform off-the-shelf spelling correction tools on a manually annotated MIMIC-III test set, and counter the frequency bias of a noisy channel model, showing that neural embeddings can be successfully exploited to improve upon the state-of-the-art. For Dutch, we also outperform an off-the-shelf spelling correction tool on manually annotated clinical records from the Antwerp University Hospital, but can offer no empirical evidence that our method counters the frequency bias of a noisy channel model in this case as well. However, both our context-sensitive model and our implementation of the noisy channel model obtain high scores on the test set, establishing a state-of-the-art for Dutch clinical spelling correction with the noisy channel model.Comment: Appears in volume 7 of the CLIN Journal, http://www.clinjournal.org/biblio/volum

    Practical feature subset selection for machine learning

    Get PDF
    Machine learning algorithms automatically extract knowledge from machine readable information. Unfortunately, their success is usually dependant on the quality of the data that they operate on. If the data is inadequate, or contains extraneous and irrelevant information, machine learning algorithms may produce less accurate and less understandable results, or may fail to discover anything of use at all. Feature subset selection can result in enhanced performance, a reduced hypothesis search space, and, in some cases, reduced storage requirement. This paper describes a new feature selection algorithm that uses a correlation based heuristic to determine the “goodness” of feature subsets, and evaluates its effectiveness with three common machine learning algorithms. Experiments using a number of standard machine learning data sets are presented. Feature subset selection gave significant improvement for all three algorithm

    Answering Complex Questions Using Open Information Extraction

    Full text link
    While there has been substantial progress in factoid question-answering (QA), answering complex questions remains challenging, typically requiring both a large body of knowledge and inference techniques. Open Information Extraction (Open IE) provides a way to generate semi-structured knowledge for QA, but to date such knowledge has only been used to answer simple questions with retrieval-based methods. We overcome this limitation by presenting a method for reasoning with Open IE knowledge, allowing more complex questions to be handled. Using a recently proposed support graph optimization framework for QA, we develop a new inference model for Open IE, in particular one that can work effectively with multiple short facts, noise, and the relational structure of tuples. Our model significantly outperforms a state-of-the-art structured solver on complex questions of varying difficulty, while also removing the reliance on manually curated knowledge.Comment: Accepted as short paper at ACL 201
    corecore