653 research outputs found

    Development of a System Architecture for Unmanned Systems Across Multiple Domains

    Get PDF
    In the unmanned systems industry, there is no common standard for systems components, connections and relations. Such a standard is never likely to exist. Needless to say, a system needs to have the components that are required for the application, however, it is possible to abstract the common functionality out of an individual implementation. This thesis presents a universal unmanned systems architecture that collects all of the common features of an unmanned system and presents them as a set of packages and libraries that can be used in any domain of unmanned system operation. The research and design of the universal architecture results in a well-defined architecture that can be used and implemented on any unmanned system. The AUVSI student competitions are specifically analyzed and it is shown how this universal architecture can be applied to the challenges posed by the competitions in different domains

    Sensor Fusion and Obstacle Avoidance for an Unmanned Ground Vehicle

    Get PDF
    In recent years, the capabilities and potential value of unmanned autonomous systems (UAS) to perform an extensive variety of missions have significantly increased. It is well comprehended that there are various challenges associated with the realization of autonomous operations in complex urban environments. These difficulties include the requirement for precision guidance and control in conceivably GPS-denied conditions as well as the need to sense and avoid stationary and moving obstructions within the scene. The small size of some of these vehicles restricts the size, weight and power consumption of the sensor payload and onboard computational processing that can accommodated by UAS. This thesis analyzes the development and implementation of terrain mapping, path planning and control algorithms on an unmanned ground vehicle. Data from GPS, IMU and LIDAR sensors are fused in order to compute and update a dense 3D point cloud that is used by an implicit terrain algorithm to provide detailed mathematical representations of complex 3D structures generally found in urban environments. A receding horizon path planning algorithm is employed to adaptively produce a kinematically-feasible path for the unmanned ground vehicle. This path planning algorithm incorporates obstacle avoidance constraints and provides a set of waypoints to be followed by the unmanned ground vehicle. A waypoint controller is designed and implemented to enable the vehicle to follow the waypoints from the path planner. Open-loop experiments are provided with an unmanned ground vehicle in order to demonstrate terrain generation with real sensor data. Closed-loop results are then presented for a simulated ground vehicle in order to demonstrate the performance of the receding horizon path planning and control algorithms using the terrain map generated from the open-loop experiments

    Objectively Optimized Earth Observing Systems

    Get PDF

    Autonomous Drone Landings on an Unmanned Marine Vehicle using Deep Reinforcement Learning

    Get PDF
    This thesis describes with the integration of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV, also commonly known as drone) in a single Multi-Agent System (MAS). In marine robotics, the advantage offered by a MAS consists of exploiting the key features of a single robot to compensate for the shortcomings in the other. In this way, a USV can serve as the landing platform to alleviate the need for a UAV to be airborne for long periods time, whilst the latter can increase the overall environmental awareness thanks to the possibility to cover large portions of the prevailing environment with a camera (or more than one) mounted on it. There are numerous potential applications in which this system can be used, such as deployment in search and rescue missions, water and coastal monitoring, and reconnaissance and force protection, to name but a few. The theory developed is of a general nature. The landing manoeuvre has been accomplished mainly identifying, through artificial vision techniques, a fiducial marker placed on a flat surface serving as a landing platform. The raison d'etre for the thesis was to propose a new solution for autonomous landing that relies solely on onboard sensors and with minimum or no communications between the vehicles. To this end, initial work solved the problem while using only data from the cameras mounted on the in-flight drone. In the situation in which the tracking of the marker is interrupted, the current position of the USV is estimated and integrated into the control commands. The limitations of classic control theory used in this approached suggested the need for a new solution that empowered the flexibility of intelligent methods, such as fuzzy logic or artificial neural networks. The recent achievements obtained by deep reinforcement learning (DRL) techniques in end-to-end control in playing the Atari video-games suite represented a fascinating while challenging new way to see and address the landing problem. Therefore, novel architectures were designed for approximating the action-value function of a Q-learning algorithm and used to map raw input observation to high-level navigation actions. In this way, the UAV learnt how to land from high latitude without any human supervision, using only low-resolution grey-scale images and with a level of accuracy and robustness. Both the approaches have been implemented on a simulated test-bed based on Gazebo simulator and the model of the Parrot AR-Drone. The solution based on DRL was further verified experimentally using the Parrot Bebop 2 in a series of trials. The outcomes demonstrate that both these innovative methods are both feasible and practicable, not only in an outdoor marine scenario but also in indoor ones as well

    Autonomisen multikopteriparven hallinta etsintä- ja pelastustehtävissä

    Get PDF
    This thesis presents the requirements and implementation of a Ground Control Station (GCS) application for controlling a fleet of multicopters to perform a Search And Rescue (SAR) mission. The requirements are put together by analysing existing drone types, SAR practices, and available GCS applications. Multicopters are found to be the most feasible drone to use for the SAR use case because of their maneuverability, despite not having the best endurance. Several existing area coverage methods are presented and their usefulness is analyzed for SAR scenarios where different amounts of prior knowledge is available. It is stated that most search patterns can be used with a fleet of drones, by creating drone formations and by dividing the target area into sub-areas. It is noted that most currently available GCS applications are focused on controlling a single drone for either industrial or hobby use. A proof of concept prototype is developed on top of an open source GCS and tested in field tests. Based on all the previous learnings from the protype and research, a new GCS is designed and developed. The development on optimizing communications between the GCS and the autopilot leads to a filed patent application. The new software is tested with three multicopters in a water rescue scenario and several user interface improvements are made as a result of the learnings. The development of a GCS for controlling a drone fleet for search and rescue is proven feasible.Työssä esitetään multikopteriparven hallintaan käytettävän Ground Control Station (GCS) ohjelmiston vaatimukset ja toteutus Search And Rescue (SAR) etsintä- ja pelastustehtävien suorittamiseksi. Vaatimukset kootaan yhteen analysoimalla saatavilla olevia droonityyppejä, SAR pelastuskäytäntöjä, sekä GCS ohjelmistoja. Multikopterit osoittautuvat liikkuvuutensa ansiosta pelastustehtäviin sopivimmaksi vaihtoehdoksi, vaikka niiden saavutettavissa oleva lentoaika ei ole parhaimmasta päästä. Erilaisia etsintämetodeja esitetään alueiden kattamiseksi ja niiden hyödyllisyyttä analysoidaan SAR tilanteissa, joissa ennakkotietoa on saatavilla vaihtelevasti. Osoitetaan, että useimpia etsintäalgoritmeja voidaan hyödyntää drooniparvella, muodostamalla lentomuodostelmia, sekä jakamalla kohdealue pienempiin osa-alueisiin. Huomataan, että suurin osa tällä hetkellä saatavilla olevista GCS ohjelmistoista on suunnattu teollisuuden tai harrastelijoiden käyttöön, pääasiassa yksittäisen droonin hallintaan. Prototyyppi kehitetään avoimen lähdekoodin GCS ohjelmiston pohjalta ja testataan kenttätesteissä. Tästä saadun tiedon avulla suunnitellaan ja kehitetään uusi GCS ohjelmisto. Kehitystyö viestinnän optimoinniksi autopilotin ja GCS ohjelmiston välillä johtaa patenttihakemukseen. Uusi ohjelmisto testataan kolmella multikopterilla vesipelastustilanteessa ja sen seurauksena käyttöliittymään tehdään useita parannuksia. GCS ohjelmiston luominen drooniparven hallintaan etsintä- ja pelastustehtävissä todetaan mahdolliseksi

    Information-Theoretic Motion Planning for Constrained Sensor Networks

    Get PDF
    This paper considers the problem of online informative motion planning for a network of heterogeneous sensing agents, each subject to dynamic constraints, environmental constraints, and sensor limitations. Prior work has not yielded algorithms that are amenable to such general constraint characterizations. In this paper, we propose the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm as a solution to the constrained informative motion planning problem that embeds metrics on uncertainty reduction at both the tree growth and path selection levels. IRRT possesses a number of beneficial properties, chief among them being the ability to find dynamically feasible, informative paths on short timescales, even subject to the aforementioned constraints. The utility of IRRT in efficiently localizing stationary targets is demonstrated in a progression of simulation results with both single-agent and multiagent networks. These results show that IRRT can be used in real-time to generate and execute information-rich paths in tightly constrained environments.AFOSR and USAF under grant (FA9550-08-1-0086
    corecore