27 research outputs found

    Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation

    Full text link
    In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how to effectively handle various Bayer patterns from different data sources, and subsequently how to perform valid data augmentation with raw images. To address the first problem, we propose a Bayer pattern unification (BayerUnify) method to unify different Bayer patterns. This allows us to fully utilize a heterogeneous dataset to train a single denoising model instead of training one model for each pattern. Furthermore, while it is essential to augment the dataset to improve model generalization and performance, we discovered that it is error-prone to modify raw images by adapting augmentation methods designed for RGB images. Towards this end, we present a Bayer preserving augmentation (BayerAug) method as an effective approach for raw image augmentation. Combining these data processing technqiues with a modified U-Net, our method achieves a PSNR of 52.11 and a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising Challenge, demonstrating the state-of-the-art performance. Our code is available at https://github.com/Jiaming-Liu/BayerUnifyAug.Comment: Accepted by CVPRW 201

    Towards practical deep learning based image restoration model

    Get PDF
    Image Restoration (IR) is a task of reconstructing the latent image from its degraded observations. It has become an important research area in computer vision and image processing, and has wide applications in the imaging industry. Conventional methods apply inverse filtering or optimization-based approaches to restore images corrupted in ideal cases. The limited restoration performance on ill-posed problems and the low-efficient iterative optimization processes prevents such algorithms from being deployed to more complicated industry applications. Recently, the advanced deep Convolutional Neural Networks (CNNs) begin to model the image restoration as learning and inferring the posterior probability in a regression model, and successfully achieved remarkable performance. However, due to the data-driven nature, the models trained with simple synthetic paired data (e.g, bicubic interpolation or Gaussian noises) cannot be well adapted to more complicated inputs from real data domains. Besides, acquiring real paired data for training such models is also very challenging. In this dissertation, we discuss the data manipulation and model adaptability of the deep learning based image restoration tasks. Specifically, we study improving the model adaptability by understanding the domain difference between its training data and its expected testing data. We argue that the cause of image degradation can be various due to multiple imaging and transmission pipelines. Though complicated to analyze, for some specific imaging problems, we can still improve the performance of deep restoration models on unseen testing data by resolving the data domain differences implied in the image acquisition and formation pipeline. Our analysis focuses on digital image denoising, image restoration from more complicated degradation types beyond denoising and multi-image inpainting. For all tasks, the proposed training or adaptation strategies, based on the physical principle of the degradation formation or based on geometric assumption of the image, achieve a reasonable improvement on the restoration performance. For image denoising, we discuss the influence of the Bayer pattern of the Camera Filter Array (CFA) and the image demosaicing process on the adaptability of the deep denoising models. Specifically, for the task of denoising RAW sensor observations, we find that unifying and augmenting the data Bayer pattern during training and testing is an efficient strategy to make the well-trained denoising model Bayer-invariant. Additionally, for the RGB image denoising, demosaicing the noisy RAW images with Bayer patterns will result in the spatial-correlation of pixel noises. Therefore, we propose the pixel-shuffle down-sampling approach to break down this spatial correlation, and make the Gaussian-trained denoiser more adaptive to real RGB noisy images. Beyond denoising, we explain a more complicated degradation process involving diffraction when there are some occlusions on the imaging lens. One example is a novel imaging model called Under-Display Camera (UDC). From the perspective of optical analysis, we study the physics-based imaging processing method by deriving the forward model of the degradation, and synthesize the paired data for both conventional and deep denoising pipeline. Experiments demonstrate the effectiveness of the forward model and the deep restoration model trained with synthetic data achieves visually similar performance to the one trained with real paired images. Last, we further discuss reference-based image inpainting to restore the missing regions in the target image by reusing contents from the source image. Due to the color and spatial misalignment between the two images, we first initialize the warping by using multi-homography registration, and then propose a content-preserving Color and Spatial Transformer (CST) to refine the misalignment and color difference. We designed the CST to be scale-robust, so it mitigates the warping problems when the model is applied to testing images with different resolution. We synthesize realistic data while training the CST, and it suggests the inpainting pipeline achieves a more robust restoration performance with the proposed CST

    Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty

    Full text link
    Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.Comment: Accepted by AAAI202

    CycleISP: Real Image Restoration via Improved Data Synthesis

    Full text link
    The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedure. Consequently, image denoising algorithms are mostly developed and evaluated on synthetic data that is usually generated with a widespread assumption of additive white Gaussian noise (AWGN). While the CNNs achieve impressive results on these synthetic datasets, they do not perform well when applied on real camera images, as reported in recent benchmark datasets. This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline. In this paper, we present a framework that models camera imaging pipeline in forward and reverse directions. It allows us to produce any number of realistic image pairs for denoising both in RAW and sRGB spaces. By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets. The parameters in our model are ~5 times lesser than the previous best method for RAW denoising. Furthermore, we demonstrate that the proposed framework generalizes beyond image denoising problem e.g., for color matching in stereoscopic cinema. The source code and pre-trained models are available at https://github.com/swz30/CycleISP.Comment: CVPR 2020 (Oral
    corecore