229 research outputs found

    SuperSpike: Supervised learning in multi-layer spiking neural networks

    Full text link
    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multi-layer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns

    A review of learning in biologically plausible spiking neural networks

    Get PDF
    Artificial neural networks have been used as a powerful processing tool in various areas such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has encouraged researchers to improve artificial neural networks by investigating the biological brain. Neurological research has significantly progressed in recent years and continues to reveal new characteristics of biological neurons. New technologies can now capture temporal changes in the internal activity of the brain in more detail and help clarify the relationship between brain activity and the perception of a given stimulus. This new knowledge has led to a new type of artificial neural network, the Spiking Neural Network (SNN), that draws more faithfully on biological properties to provide higher processing abilities. A review of recent developments in learning of spiking neurons is presented in this paper. First the biological background of SNN learning algorithms is reviewed. The important elements of a learning algorithm such as the neuron model, synaptic plasticity, information encoding and SNN topologies are then presented. Then, a critical review of the state-of-the-art learning algorithms for SNNs using single and multiple spikes is presented. Additionally, deep spiking neural networks are reviewed, and challenges and opportunities in the SNN field are discussed

    Surrogate Gradient Learning in Spiking Neural Networks

    Get PDF
    Spiking neural networks are nature's versatile solution to fault-tolerant and energy efficient signal processing. To translate these benefits into hardware, a growing number of neuromorphic spiking neural network processors attempt to emulate biological neural networks. These developments have created an imminent need for methods and tools to enable such systems to solve real-world signal processing problems. Like conventional neural networks, spiking neural networks can be trained on real, domain specific data. However, their training requires overcoming a number of challenges linked to their binary and dynamical nature. This article elucidates step-by-step the problems typically encountered when training spiking neural networks, and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting. To that end, it gives an overview of existing approaches and provides an introduction to surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges

    Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    Get PDF
    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of FILT in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find FILT to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of FILT to be consistent with that of the highly efficient E-learning Chronotron, but with the distinct advantage that FILT is also implementable as an online method for increased biological realism.Comment: 26 pages, 10 figures, this version is published in PLoS ONE and incorporates reviewer comment

    TempUnit: A Bio-Inspired Spiking Neural Network

    Get PDF
    • …
    corecore