33 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    ํ›ˆ๋ จ ์ž๋ฃŒ ์ž๋™ ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต์„ ํ†ตํ•œ SAR ์˜์ƒ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2021. 2. ๊น€๋•์ง„.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vesselโ€™s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.์ „์ฒœํ›„ ์ง€๊ตฌ ๊ด€์ธก ์œ„์„ฑ์ธ SAR๋ฅผ ํ†ตํ•œ ์„ ๋ฐ• ํƒ์ง€๋Š” ํ•ด์–‘ ์ž์›์˜ ํ™•๋ณด์™€ ํ•ด์ƒ ์•ˆ์ „ ๋ณด์žฅ์— ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์˜ ๋„์ž…์œผ๋กœ ์ธํ•ด ์„ ๋ฐ•์„ ๋น„๋กฏํ•œ ์‚ฌ๋ฌผ ํƒ์ง€์˜ ์ •ํ™•๋„ ๋ฐ ํšจ์œจ์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ์œผ๋‚˜, ์ด์™€ ๊ด€๋ จ๋œ ๋‹ค์ˆ˜์˜ ์—ฐ๊ตฌ๋Š” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ๋Ÿ‰์— ์ง‘์ค‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํƒ์ง€ ์ •ํ™•๋„์˜ ๊ทผ๋ณธ์ ์ธ ํ–ฅ์ƒ์€ ์ •๋ฐ€ํ•˜๊ฒŒ ์ทจ๋“๋œ ๋Œ€๋Ÿ‰์˜ ํ›ˆ๋ จ์ž๋ฃŒ ์—†์ด๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ•์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ AIS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์‚ฌ์šฉ๋  ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ž๋™์ ์œผ๋กœ ์ทจ๋“ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด์‚ฐ์ ์ธ AIS ์ž๋ฃŒ๋ฅผ SAR ์˜์ƒ์˜ ์ทจ๋“์‹œ๊ฐ์— ๋งž์ถ”์–ด ์ •ํ™•ํ•˜๊ฒŒ ๋ณด๊ฐ„ํ•˜๊ณ , AIS ์„ผ์„œ ์ž์ฒด๊ฐ€ ๊ฐ€์ง€๋Š” ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋™ํ•˜๋Š” ์‚ฐ๋ž€์ฒด์˜ ์‹œ์„  ์†๋„๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋„ํ”Œ๋Ÿฌ ํŽธ์ด ํšจ๊ณผ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด SAR ์œ„์„ฑ์˜ ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์„ฑ๊ณผ ์‚ฐ๋ž€์ฒด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ๊ณ„์‚ฐ๋œ AIS ์„ผ์„œ์˜ ์˜์ƒ ๋‚ด์˜ ์œ„์น˜๋กœ๋ถ€ํ„ฐ ์„ ๋ฐ• ๋‚ด AIS ์„ผ์„œ์˜ ๋ฐฐ์น˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ›ˆ๋ จ์ž๋ฃŒ ํ˜•์‹์— ๋งž์ถ”์–ด ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜๊ณ , ์–ด์„ ์— ๋Œ€ํ•œ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ VPASS ์ž๋ฃŒ ์—ญ์‹œ ์œ ์‚ฌํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€๊ณตํ•˜์—ฌ ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜์˜€๋‹ค. AIS ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋Œ€๋กœ ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ์™€ ํ•จ๊ป˜ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ •ํ™•๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ๋Š” ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ ๋Œ€๋น„ ๋” ๋†’์€ ํƒ์ง€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์ธ ์ •๋ฐ€๋„, ์žฌํ˜„์œจ๊ณผ F1 score๋ฅผ ํ†ตํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ํ›ˆ๋ จ์ž๋ฃŒ ์ž๋™ ์ทจ๋“ ๊ธฐ๋ฒ•์œผ๋กœ ์–ป์€ ์„ ๋ฐ•์— ๋Œ€ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ํŠนํžˆ ๊ธฐ์กด์˜ ์„ ๋ฐ• ํƒ์ง€ ๊ธฐ๋ฒ•์œผ๋กœ๋Š” ๋ถ„๋ณ„์ด ์–ด๋ ค์› ๋˜ ํ•ญ๋งŒ์— ์ธ์ ‘ํ•œ ์„ ๋ฐ•๊ณผ ์‚ฐ๋ž€์ฒด ์ฃผ๋ณ€์˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๋ถ„๋ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์™€ ํ•จ๊ป˜, ์„ ๋ฐ• ํƒ์ง€ ๊ฒฐ๊ณผ์™€ ํ•ด๋‹น ์ง€์—ญ์— ๋Œ€ํ•œ AIS ๋ฐ VPASS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ ๋ฐ•์˜ ๋ฏธ์‹๋ณ„์„ฑ์„ ํŒ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ ๋˜ํ•œ ์ œ์‹œํ•˜์˜€๋‹ค.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - ๊ตญ๋ฌธ ์š”์•ฝ๋ฌธ - 128 - Bibliography - 130 -Maste

    Electrical Impedance Tomography with Deep Calder\'on Method

    Full text link
    Electrical impedance tomography (EIT) is a noninvasive medical imaging modality utilizing the current-density/voltage data measured on the surface of the subject. Calder\'on's method is a relatively recent EIT imaging algorithm that is non-iterative, fast, and capable of reconstructing complex-valued electric impedances. However, due to the regularization via low-pass filtering and linearization, the reconstructed images suffer from severe blurring and underestimation of the exact conductivity values. In this work, we develop an enhanced version of Calder\'on's method, using convolution neural networks (i.e., U-net) via a postprocessing step. Specifically, we learn a U-net to postprocess the EIT images generated by Calder\'on's method so as to have better resolutions and more accurate estimates of conductivity values. We simulate chest configurations with which we generate the current-density/voltage boundary measurements and the corresponding reconstructed images by Calder\'on's method. With the paired training data, we learn the neural network and evaluate its performance on real tank measurement data. The experimental results indicate that the proposed approach indeed provides a fast and direct (complex-valued) impedance tomography imaging technique, and substantially improves the capability of the standard Calder\'on's method.Comment: 20 page

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Spatial Modeling of Compact Polarimetric Synthetic Aperture Radar Imagery

    Get PDF
    The RADARSAT Constellation Mission (RCM) utilizes compact polarimetric (CP) mode to provide data with varying resolutions, supporting a wide range of applications including oil spill detection, sea ice mapping, and land cover analysis. However, the complexity and variability of CP data, influenced by factors such as weather conditions and satellite infrastructure, introduce signature ambiguity. This ambiguity poses challenges in accurate object classification, reducing discriminability and increasing uncertainty. To address these challenges, this thesis introduces tailored spatial models in CP SAR imagery through the utilization of machine learning techniques. Firstly, to enhance oil spill monitoring, a novel conditional random field (CRF) is introduced. The CRF model leverages the statistical properties of CP SAR data and exploits similarities in labels and features among neighboring pixels to effectively model spatial interactions. By mitigating the impact of speckle noise and accurately distinguishing oil spill candidates from oil-free water, the CRF model achieves successful results even in scenarios where the availability of labeled samples is limited. This highlights the capability of CRF in handling situations with a scarcity of training data. Secondly, to improve the accuracy of sea ice mapping, a region-based automated classification methodology is developed. This methodology incorporates learned features, spatial context, and statistical properties from various SAR modes, resulting in enhanced classification accuracy and improved algorithmic efficiency. Thirdly, the presence of a high degree of heterogeneity in target distribution presents an additional challenge in land cover mapping tasks, further compounded by signature ambiguity. To address this, a novel transformer model is proposed. The transformer model incorporates both fine- and coarse-grained spatial dependencies between pixels and leverages different levels of features to enhance the accuracy of land cover type detection. The proposed approaches have undergone extensive experimentation in various remote sensing tasks, validating their effectiveness. By introducing tailored spatial models and innovative algorithms, this thesis successfully addresses the inherent complexity and variability of CP data, thereby ensuring the accuracy and reliability of diverse applications in the field of remote sensing
    corecore