203 research outputs found

    Modélisation des comportements de recherche basé sur les interactions des utilisateurs

    Get PDF
    Les utilisateurs de systèmes d'information divisent normalement les tâches en une séquence de plusieurs étapes pour les résoudre. En particulier, les utilisateurs divisent les tâches de recherche en séquences de requêtes, en interagissant avec les systèmes de recherche pour mener à bien le processus de recherche d'informations. Les interactions des utilisateurs sont enregistrées dans des journaux de requêtes, ce qui permet de développer des modèles pour apprendre automatiquement les comportements de recherche à partir des interactions des utilisateurs avec les systèmes de recherche. Ces modèles sont à la base de multiples applications d'assistance aux utilisateurs qui aident les systèmes de recherche à être plus interactifs, faciles à utiliser, et cohérents. Par conséquent, nous proposons les contributions suivantes : un modèle neuronale pour apprendre à détecter les limites des tâches de recherche dans les journaux de requête ; une architecture de regroupement profond récurrent qui apprend simultanément les représentations de requête et regroupe les requêtes en tâches de recherche ; un modèle non supervisé et indépendant d'utilisateur pour l'identification des tâches de recherche prenant en charge les requêtes dans seize langues ; et un modèle de tâche de recherche multilingue, une approche non supervisée qui modélise simultanément l'intention de recherche de l'utilisateur et les tâches de recherche. Les modèles proposés améliorent les méthodes existantes de modélisation, en tenant compte de la confidentialité des utilisateurs, des réponses en temps réel et de l'accessibilité linguistique. Le respect de la vie privée de l'utilisateur est une préoccupation majeure, tandis que des réponses rapides sont essentielles pour les systèmes de recherche qui interagissent avec les utilisateurs en temps réel, en particulier dans la recherche par conversation. Dans le même temps, l'accessibilité linguistique est essentielle pour aider les utilisateurs du monde entier, qui interagissent avec les systèmes de recherche dans de nombreuses langues. Les contributions proposées peuvent bénéficier à de nombreuses applications d'assistance aux utilisateurs, en aidant ces derniers à mieux résoudre leurs tâches de recherche lorsqu'ils accèdent aux systèmes de recherche pour répondre à leurs besoins d'information.Users of information systems normally divide tasks in a sequence of multiple steps to solve them. In particular, users divide search tasks into sequences of queries, interacting with search systems to carry out the information seeking process. User interactions are registered on search query logs, enabling the development of models to automatically learn search patterns from the users' interactions with search systems. These models underpin multiple user assisting applications that help search systems to be more interactive, user-friendly, and coherent. User assisting applications include query suggestion, the ranking of search results based on tasks, query reformulation analysis, e-commerce applications, retrieval of advertisement, query-term prediction, mapping of queries to search tasks, and so on. Consequently, we propose the following contributions: a neural model for learning to detect search task boundaries in query logs; a recurrent deep clustering architecture that simultaneously learns query representations through self-training, and cluster queries into groups of search tasks; Multilingual Graph-Based Clustering, an unsupervised, user-agnostic model for search task identification supporting queries in sixteen languages; and Language-agnostic Search Task Model, an unsupervised approach that simultaneously models user search intent and search tasks. Proposed models improve on existing methods for modeling user interactions, taking into account user privacy, realtime response times, and language accessibility. User privacy is a major concern in Ethics for intelligent systems, while fast responses are critical for search systems interacting with users in realtime, particularly in conversational search. At the same time, language accessibility is essential to assist users worldwide, who interact with search systems in many languages. The proposed contributions can benefit many user assisting applications, helping users to better solve their search tasks when accessing search systems to fulfill their information needs

    Inferring User Needs and Tasks from User Interactions

    Get PDF
    The need for search often arises from a broad range of complex information needs or tasks (such as booking travel, buying a house, etc.) which lead to lengthy search processes characterised by distinct stages and goals. While existing search systems are adept at handling simple information needs, they offer limited support for tackling complex tasks. Accurate task representations could be useful in aptly placing users in the task-subtask space and enable systems to contextually target the user, provide them better query suggestions, personalization and recommendations and help in gauging satisfaction. The major focus of this thesis is to work towards task based information retrieval systems - search systems which are adept at understanding, identifying and extracting tasks as well as supporting user’s complex search task missions. This thesis focuses on two major themes: (i) developing efficient algorithms for understanding and extracting search tasks from log user and (ii) leveraging the extracted task information to better serve the user via different applications. Based on log analysis on a tera-byte scale data from a real-world search engine, detailed analysis is provided on user interactions with search engines. On the task extraction side, two bayesian non-parametric methods are proposed to extract subtasks from a complex task and to recursively extract hierarchies of tasks and subtasks. A novel coupled matrix-tensor factorization model is proposed that represents user based on their topical interests and task behaviours. Beyond personalization, the thesis demonstrates that task information provides better context to learn from and proposes a novel neural task context embedding architecture to learn query representations. Finally, the thesis examines implicit signals of user interactions and considers the problem of predicting user’s satisfaction when engaged in complex search tasks. A unified multi-view deep sequential model is proposed to make query and task level satisfaction prediction

    Modeling information cascades with self-exciting processes via generalized epidemic models

    Full text link
    © 2020 Association for Computing Machinery. Epidemic models and self-exciting processes are two types of models used to describe diffusion phenomena online and offline. These models were originally developed in different scientific communities, and their commonalities are under-explored. This work establishes, for the first time, a general connection between the two model classes via three new mathematical components. The first is a generalized version of stochastic Susceptible-Infected-Recovered (SIR) model with arbitrary recovery time distributions; the second is the relationship between the (latent and arbitrary) recovery time distribution, recovery hazard function, and the infection kernel of self-exciting processes; the third includes methods for simulating, fitting, evaluating and predicting the generalized process. On three large Twitter diffusion datasets, we conduct goodness-of-fit tests and holdout log-likelihood evaluation of self-exciting processes with three infection kernels — exponential, power-law and Tsallis Q-exponential. We show that the modeling performance of the infection kernels varies with respect to the temporal structures of diffusions, and also with respect to user behavior, such as the likelihood of being bots. We further improve the prediction of popularity by combining two models that are identified as complementary by the goodness-of-fit tests

    Modeling Time-Series and Spatial Data for Recommendations and Other Applications

    Full text link
    With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.Comment: Ph.D. Thesis (2022

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    Interactions in Information Spread

    Full text link
    Since the development of writing 5000 years ago, human-generated data gets produced at an ever-increasing pace. Classical archival methods aimed at easing information retrieval. Nowadays, archiving is not enough anymore. The amount of data that gets generated daily is beyond human comprehension, and appeals for new information retrieval strategies. Instead of referencing every single data piece as in traditional archival techniques, a more relevant approach consists in understanding the overall ideas conveyed in data flows. To spot such general tendencies, a precise comprehension of the underlying data generation mechanisms is required. In the rich literature tackling this problem, the question of information interaction remains nearly unexplored. First, we investigate the frequency of such interactions. Building on recent advances made in Stochastic Block Modelling, we explore the role of interactions in several social networks. We find that interactions are rare in these datasets. Then, we wonder how interactions evolve over time. Earlier data pieces should not have an everlasting influence on ulterior data generation mechanisms. We model this using dynamic network inference advances. We conclude that interactions are brief. Finally, we design a framework that jointly models rare and brief interactions based on Dirichlet-Hawkes Processes. We argue that this new class of models fits brief and sparse interaction modelling. We conduct a large-scale application on Reddit and find that interactions play a minor role in this dataset. From a broader perspective, our work results in a collection of highly flexible models and in a rethinking of core concepts of machine learning. Consequently, we open a range of novel perspectives both in terms of real-world applications and in terms of technical contributions to machine learning.Comment: PhD thesis defended on 2022/09/1

    Understanding User Intent Modeling for Conversational Recommender Systems: A Systematic Literature Review

    Full text link
    Context: User intent modeling is a crucial process in Natural Language Processing that aims to identify the underlying purpose behind a user's request, enabling personalized responses. With a vast array of approaches introduced in the literature (over 13,000 papers in the last decade), understanding the related concepts and commonly used models in AI-based systems is essential. Method: We conducted a systematic literature review to gather data on models typically employed in designing conversational recommender systems. From the collected data, we developed a decision model to assist researchers in selecting the most suitable models for their systems. Additionally, we performed two case studies to evaluate the effectiveness of our proposed decision model. Results: Our study analyzed 59 distinct models and identified 74 commonly used features. We provided insights into potential model combinations, trends in model selection, quality concerns, evaluation measures, and frequently used datasets for training and evaluating these models. Contribution: Our study contributes practical insights and a comprehensive understanding of user intent modeling, empowering the development of more effective and personalized conversational recommender systems. With the Conversational Recommender System, researchers can perform a more systematic and efficient assessment of fitting intent modeling frameworks

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Learning with relational knowledge in the context of cognition, quantum computing, and causality

    Get PDF

    Flexible estimation of temporal point processes and graphs

    Get PDF
    Handling complex data types with spatial structures, temporal dependencies, or discrete values, is generally a challenge in statistics and machine learning. In the recent years, there has been an increasing need of methodological and theoretical work to analyse non-standard data types, for instance, data collected on protein structures, genes interactions, social networks or physical sensors. In this thesis, I will propose a methodology and provide theoretical guarantees for analysing two general types of discrete data emerging from interactive phenomena, namely temporal point processes and graphs. On the one hand, temporal point processes are stochastic processes used to model event data, i.e., data that comes as discrete points in time or space where some phenomenon occurs. Some of the most successful applications of these discrete processes include online messages, financial transactions, earthquake strikes, and neuronal spikes. The popularity of these processes notably comes from their ability to model unobserved interactions and dependencies between temporally and spatially distant events. However, statistical methods for point processes generally rely on estimating a latent, unobserved, stochastic intensity process. In this context, designing flexible models and consistent estimation methods is often a challenging task. On the other hand, graphs are structures made of nodes (or agents) and edges (or links), where an edge represents an interaction or relationship between two nodes. Graphs are ubiquitous to model real-world social, transport, and mobility networks, where edges can correspond to virtual exchanges, physical connections between places, or migrations across geographical areas. Besides, graphs are used to represent correlations and lead-lag relationships between time series, and local dependence between random objects. Graphs are typical examples of non-Euclidean data, where adequate distance measures, similarity functions, and generative models need to be formalised. In the deep learning community, graphs have become particularly popular within the field of geometric deep learning. Structure and dependence can both be modelled by temporal point processes and graphs, although predominantly, the former act on the temporal domain while the latter conceptualise spatial interactions. Nonetheless, some statistical models combine graphs and point processes in order to account for both spatial and temporal dependencies. For instance, temporal point processes have been used to model the birth times of edges and nodes in temporal graphs. Moreover, some multivariate point processes models have a latent graph parameter governing the pairwise causal relationships between the components of the process. In this thesis, I will notably study such a model, called the Hawkes model, as well as graphs evolving in time. This thesis aims at designing inference methods that provide flexibility in the contexts of temporal point processes and graphs. This manuscript is presented in an integrated format, with four main chapters and two appendices. Chapters 2 and 3 are dedicated to the study of Bayesian nonparametric inference methods in the generalised Hawkes point process model. While Chapter 2 provides theoretical guarantees for existing methods, Chapter 3 also proposes, analyses, and evaluates a novel variational Bayes methodology. The other main chapters introduce and study model-free inference approaches for two estimation problems on graphs, namely spectral methods for the signed graph clustering problem in Chapter 4, and a deep learning algorithm for the network change point detection task on temporal graphs in Chapter 5. Additionally, Chapter 1 provides an introduction and background preliminaries on point processes and graphs. Chapter 6 concludes this thesis with a summary and critical thinking on the works in this manuscript, and proposals for future research. Finally, the appendices contain two supplementary papers. The first one, in Appendix A, initiated after the COVID-19 outbreak in March 2020, is an application of a discrete-time Hawkes model to COVID-related deaths counts during the first wave of the pandemic. The second work, in Appendix B, was conducted during an internship at Amazon Research in 2021, and proposes an explainability method for anomaly detection models acting on multivariate time series
    • …
    corecore