997 research outputs found

    Facilitating the implementation of neural network-based predictive control to optimize building heating operation

    Get PDF
    Simple neural network (NN) architecture is a reliable tool to transform reactive rule-based systems into predictive systems. Thermal comfort is of utmost importance in office buildings, which need the activation of heating systems at an optimal time. A high-performance NN predictive system requires a large training dataset. This can limit system efficiency due to the lack of enough historical data derived from thermal controllers. To address this issue, we generated, trained and tested a dataset of eight sizes using a calibrated building model. A set of key performance indicators (KPIs) was improved by studying the output performance. The effect of normalization and standardization preprocessing techniques on NN prediction ability was studied. Learning curves showed that a minimum of 1–4 months of data are required to obtain enough accuracy. Two heating seasons provide the optimal data size to calibrate the NN properly with high prediction accuracy. The results also revealed that building data from =two years slightly improve NN performance. The most accurate results in KPIs 90%) were obtained with preprocessed data. The effect of preprocessing on large training patterns was less than that of training patterns <100. Finally, NN model performance was less accurate in cold climate zonesThe authors gratefully acknowledge the support by Catalan agency AGAUR through their research group support program (2017SGR00227)Peer ReviewedPostprint (published version

    Optimal design of HVAC systems for the design of nearly Zero Energy Buildings under different climate conditions

    Get PDF
    This master thesis aims to develop a methodology to identify the optimal operation of different HVAC system configurations for different climate conditions and building typologies. To reach the objective, the work is carried out in three main steps using dedicated tools (DesignBuilder, EnergyPlus, and eppy script (python language)) and running co-simulation. In addition, the nZEB standard established by the most recent edition of the Spanish Technical Building Code is addressed in this study through a parametric optimization study of a reference building. The effectiveness of this legislation is evaluated in terms of its capacity to disseminate the idea of building energy cost optimization and reduce the annual energy consumption in the residential sector. To this end, a reference building was designed and multiple HVAC designs were evaluated using DesignBuilder building energy simulation software and found the best optimization of HVAC solutions through EnergyPlus and eppy. In total, a set of 30 alternative scenarios was established and parametrically evaluated for 5 cities representing the 5 climatic zones of inland Spain (Bilbao, Burgos, Seville, Madrid, and Almeria) resulting in 150 simulations. The results were evaluated utilizing annual energy consumption (electricity, natural gas, and other fuels) values concerning the calibration of set point manager temperature (heating), obtaining the cost-optimal and minimum consumption levels of annual energy. It is worth mentioning that this study is mainly concentrating on the Energy Supply System (ESS), where the Energy Saving Measure (ESM) is kept unchanged, which should be reviewed in future updates

    The architecture for testing central heating control algorithms with feedback from wireless temperature sensors

    Get PDF
    The energy consumption of buildings is a significant contributor to overall energy con- sumption in developed countries. Therefore, there is great demand for intelligent buildings in which energy consumption is optimized. Online control is a crucial aspect of such optimization. The imple- mentation of modern algorithms that take advantage of developments in information technology, artificial intelligence, machine learning, sensors, and the Internet of Things (IoT) is used in this context. In this paper, an architecture for testing central heating control algorithms as well as the control algorithms of the heating system of the building is presented. In particular, evaluation metrics, the method for seamless integration, and the mechanism for real-time performance monitoring and control are put forward. The proposed tools have been successfully tested in a residential building, and the conducted tests confirmed the efficiency of the proposed solution

    Learning-based Predictive Control Approach for Real-time Management of Cyber-physical Systems

    Get PDF
    Cyber-physical systems (CPSs) are composed of heterogeneous, and networked hardware and software components tightly integrated with physical elements [72]. Large-scale CPSs are composed of complex components, subject to uncertainties [89], as though their design and development is a challenging task. Achieving reliability and real-time adaptation to changing environments are some of the challenges involved in large-scale CPSs development [51]. Addressing these challenges requires deep insights into control theory and machine learning. This research presents a learning-based control approach for CPSs management, considering their requirements, specifications, and constraints. Model-based control approaches, such as model predictive control (MPC), are proven to be efficient in the management of CPSs [26]. MPC is a control technique that uses a prediction model to estimate future dynamics of the system and generate an optimal control sequence over a prediction horizon. The main benefit of MPC in CPSs management comes from its ability to take the predictions of system’s environmental conditions and disturbances into account [26]. In this dissertation, centralized and distributed MPC strategies are designed for the management of CPSs. They are implemented for the thermal management of a CPS case study, smart building. The control goals are optimizing system efficiency (lower thermal power consumption in the building), and improving users’ convenience (maintaining desired indoor thermal conditions in the building). Model-based control strategies are advantageous in the management of CPSs due to their ability to provide system robustness and stability. The performance of a model-based controller strongly depends on the accuracy of the model as a representation of the system dynamics [26]. Accurate modeling of large-scale CPSs is difficult (due to the existence of unmodeled dynamics and uncertainties in the modeling process); therefore, modelbased control approach is not practical for these systems [6]. By incorporating machine learning with model-based control strategies, we can address CPS modeling challenges while preserving the advantages of model-based control methods. In this dissertation, a learning-based modeling strategy incorporated with a model-based control approach is proposed to manage energy usage and maintain thermal, visual, and olfactory performance in buildings. Neural networks (NNs) are used to learn the building’s performance criteria, occupant-related parameters, environmental conditions, and operation costs. Control inputs are generated through the model-based predictive controller and based on the learned parameters, to achieve the desired performance. In contrast to the existing building control systems presented in the literature, the proposed management system integrates current and future information of occupants (convenience, comfort, activities), building energy trends, and environment conditions (environmental temperature, humidity, and light) into the control design. This data is synthesized and evaluated in each instance of decision-making process for managing building subsystems. Thus, the controller can learn complex dynamics and adapt to the changing environment, to achieve optimal performance while satisfying problem constraints. Furthermore, while many prior studies in the filed are focused on optimizing a single aspect of buildings (such as thermal management), and little attention is given to the simultaneous management of all building objectives, our proposed management system is developed considering all buildings’ physical models, environmental conditions, comfort specifications, and occupants’ preferences, and can be applied to various building management applications. The proposed control strategy is implemented to manage indoor conditions and energy consumption in a building, simulated in EnergyPlus software. In addition, for comparison purposes, we designed and simulated a baseline controller for the building under the same conditions

    Data Analytics for Smart Buildings

    Get PDF

    Integration and optimal control of microcsp with building hvac systems: Review and future directions

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost
    • …
    corecore