13,135 research outputs found

    Generating Synthetic Data for Neural Keyword-to-Question Models

    Full text link
    Search typically relies on keyword queries, but these are often semantically ambiguous. We propose to overcome this by offering users natural language questions, based on their keyword queries, to disambiguate their intent. This keyword-to-question task may be addressed using neural machine translation techniques. Neural translation models, however, require massive amounts of training data (keyword-question pairs), which is unavailable for this task. The main idea of this paper is to generate large amounts of synthetic training data from a small seed set of hand-labeled keyword-question pairs. Since natural language questions are available in large quantities, we develop models to automatically generate the corresponding keyword queries. Further, we introduce various filtering mechanisms to ensure that synthetic training data is of high quality. We demonstrate the feasibility of our approach using both automatic and manual evaluation. This is an extended version of the article published with the same title in the Proceedings of ICTIR'18.Comment: Extended version of ICTIR'18 full paper, 11 page

    A Context-theoretic Framework for Compositionality in Distributional Semantics

    Full text link
    Techniques in which words are represented as vectors have proved useful in many applications in computational linguistics, however there is currently no general semantic formalism for representing meaning in terms of vectors. We present a framework for natural language semantics in which words, phrases and sentences are all represented as vectors, based on a theoretical analysis which assumes that meaning is determined by context. In the theoretical analysis, we define a corpus model as a mathematical abstraction of a text corpus. The meaning of a string of words is assumed to be a vector representing the contexts in which it occurs in the corpus model. Based on this assumption, we can show that the vector representations of words can be considered as elements of an algebra over a field. We note that in applications of vector spaces to representing meanings of words there is an underlying lattice structure; we interpret the partial ordering of the lattice as describing entailment between meanings. We also define the context-theoretic probability of a string, and, based on this and the lattice structure, a degree of entailment between strings. We relate the framework to existing methods of composing vector-based representations of meaning, and show that our approach generalises many of these, including vector addition, component-wise multiplication, and the tensor product.Comment: Submitted to Computational Linguistics on 20th January 2010 for revie

    Do Neural Nets Learn Statistical Laws behind Natural Language?

    Full text link
    The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM) effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.Comment: 21 pages, 11 figure

    Information Extraction, Data Integration, and Uncertain Data Management: The State of The Art

    Get PDF
    Information Extraction, data Integration, and uncertain data management are different areas of research that got vast focus in the last two decades. Many researches tackled those areas of research individually. However, information extraction systems should have integrated with data integration methods to make use of the extracted information. Handling uncertainty in extraction and integration process is an important issue to enhance the quality of the data in such integrated systems. This article presents the state of the art of the mentioned areas of research and shows the common grounds and how to integrate information extraction and data integration under uncertainty management cover
    • …
    corecore