690 research outputs found

    Privacy-aware Security Applications in the Era of Internet of Things

    Get PDF
    In this dissertation, we introduce several novel privacy-aware security applications. We split these contributions into three main categories: First, to strengthen the current authentication mechanisms, we designed two novel privacy-aware alternative complementary authentication mechanisms, Continuous Authentication (CA) and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Continuous Authentication (WACA), where we used the sensor data collected from a wrist-worn device to authenticate users continuously. Then, we improved WACA by integrating a noise-tolerant template matching technique called NTT-Sec to make it privacy-aware as the collected data can be sensitive. We also designed a novel, lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is easily applicable to other biometric authentication mechanisms when feature vectors are represented as fixed-length real-valued vectors. In addition to CA, we also introduced a privacy-aware multi-factor authentication method, called PINTA. In PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect the users\u27 sensitive profiles while providing privacy-preserving authentication. For the second privacy-aware contribution, we designed a multi-stage privacy attack to smart home users using the wireless network traffic generated during the communication of the devices. The attack works even on the encrypted data as it is only using the metadata of the network traffic. Moreover, we also designed a novel solution based on the generation of spoofed traffic. Finally, we introduced two privacy-aware secure data exchange mechanisms, which allow sharing the data between multiple parties (e.g., companies, hospitals) while preserving the privacy of the individual in the dataset. These mechanisms were realized with the combination of Secure Multiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition, we designed a policy language, called Curie Policy Language (CPL), to handle the conflicting relationships among parties. The novel methods, attacks, and countermeasures in this dissertation were verified with theoretical analysis and extensive experiments with real devices and users. We believe that the research in this dissertation has far-reaching implications on privacy-aware alternative complementary authentication methods, smart home user privacy research, as well as the privacy-aware and secure data exchange methods

    Privacy versus Information in Keystroke Latency Data

    Get PDF
    The computer science education research field studies how students learn computer science related concepts such as programming and algorithms. One of the major goals of the field is to help students learn CS concepts that are often difficult to grasp because students rarely encounter them in primary or secondary education. In order to help struggling students, information on the learning process of students has to be collected. In many introductory programming courses process data is automatically collected in the form of source code snapshots. Source code snapshots usually include at least the source code of the student's program and a timestamp. Studies ranging from identifying at-risk students to inferring programming experience and topic knowledge have been conducted using source code snapshots. However, replicating source code snapshot -based studies is currently hard as data is rarely shared due to privacy concerns. Source code snapshot data often includes many attributes that can be used for identification, for example the name of the student or the student number. There can even be hidden identifiers in the data that can be used for identification even if obvious identifiers are removed. For example, keystroke data from source code snapshots can be used for identification based on the distinct typing profiles of students. Hence, simply removing explicit identifiers such as names and student numbers is not enough to protect the privacy of the users who have supplied the data. At the same time, removing all keystroke data would decrease the value of the data significantly and possibly preclude replication studies. In this work, we investigate how keystroke data from a programming context could be modified to prevent keystroke latency -based identification whilst still retaining valuable information in the data. This study is the first step in enabling the sharing of anonymized source code snapshots. We investigate the degree of anonymization required to make identification of students based on their typing patterns unreliable. Then, we study whether the modified keystroke data can still be used to infer the programming experience of the students as a case study of whether the anonymized typing patterns have retained at least some informative value. We show that it is possible to modify data so that keystroke latency -based identification is no longer accurate, but the programming experience of the students can still be inferred, i.e. the data still has value to researchers

    Privacy-Protecting Techniques for Behavioral Data: A Survey

    Get PDF
    Our behavior (the way we talk, walk, or think) is unique and can be used as a biometric trait. It also correlates with sensitive attributes like emotions. Hence, techniques to protect individuals privacy against unwanted inferences are required. To consolidate knowledge in this area, we systematically reviewed applicable anonymization techniques. We taxonomize and compare existing solutions regarding privacy goals, conceptual operation, advantages, and limitations. Our analysis shows that some behavioral traits (e.g., voice) have received much attention, while others (e.g., eye-gaze, brainwaves) are mostly neglected. We also find that the evaluation methodology of behavioral anonymization techniques can be further improved

    Development of Technologies for the Detection of (Cyber)Bullying Actions: The BullyBuster Project

    Get PDF
    Bullying and cyberbullying are harmful social phenomena that involve the intentional, repeated use of power to intimidate or harm others. The ramifications of these actions are felt not just at the individual level but also pervasively throughout society, necessitating immediate attention and practical solutions. The BullyBuster project pioneers a multi-disciplinary approach, integrating artificial intelligence (AI) techniques with psychological models to comprehensively understand and combat these issues. In particular, employing AI in the project allows the automatic identification of potentially harmful content by analyzing linguistic patterns and behaviors in various data sources, including photos and videos. This timely detection enables alerts to relevant authorities or moderators, allowing for rapid interventions and potential harm mitigation. This paper, a culmination of previous research and advancements, details the potential for significantly enhancing cyberbullying detection and prevention by focusing on the system’s design and the novel application of AI classifiers within an integrated framework. Our primary aim is to evaluate the feasibility and applicability of such a framework in a real-world application context. The proposed approach is shown to tackle the pervasive issue of cyberbullying effectively

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Can e-Authentication Raise the Confidence of Both Students and Teachers in Qualifications Granted through the e-Assessment Process?

    Get PDF
    The EU-funded TeSLA project — Adaptive Trust-based e-Assessment System for Learning (http://tesla-project.eu) — has developed a suite of instruments for e-Authentication. These include face recognition, voice recognition, keystroke dynamics, forensic analysis and plagiarism detection, which were designed for integration within a university's virtual learning environment. These tools were trialed across the seven partner institutions: 4,058 participating students, including 330 students with special educational needs and disabilities (SEND); and 54 teaching staff. This paper describes the findings of this large-scale study where over 50% of the students gave a positive response to the use of these tools. In addition, over 70% agreed that these tools were 'to ensure that my examination results are trusted' and 'to prove that my essay is my own original work'. Teaching staff also reported positive experiences with TeSLA: the figure reaching 100% in one institution. We show there is evidence that a suite of e-authentication tools such as TeSLA can potentially be acceptable to students and staff and be used to increase trust in online assessment. Also, that while not yet perfected for SEND students it can still enrich their experience of assessment. We find that care is needed when introducing such technologies to ensure building the layers of trust required for their successful adoption
    • …
    corecore