69 research outputs found

    Learning Myelin Content in Multiple Sclerosis from Multimodal MRI through Adversarial Training

    Get PDF
    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). A reliable measure of the tissue myelin content is therefore essential for the understanding of the physiopathology of MS, tracking progression and assessing treatment efficacy. Positron emission tomography (PET) with [^{11} \mbox{C}] \mbox{PIB} has been proposed as a promising biomarker for measuring myelin content changes in-vivo in MS. However, PET imaging is expensive and invasive due to the injection of a radioactive tracer. On the contrary, magnetic resonance imaging (MRI) is a non-invasive, widely available technique, but existing MRI sequences do not provide, to date, a reliable, specific, or direct marker of either demyelination or remyelination. In this work, we therefore propose Sketcher-Refiner Generative Adversarial Networks (GANs) with specifically designed adversarial loss functions to predict the PET-derived myelin content map from a combination of MRI modalities. The prediction problem is solved by a sketch-refinement process in which the sketcher generates the preliminary anatomical and physiological information and the refiner refines and generates images reflecting the tissue myelin content in the human brain. We evaluated the ability of our method to predict myelin content at both global and voxel-wise levels. The evaluation results show that the demyelination in lesion regions and myelin content in normal-appearing white matter (NAWM) can be well predicted by our method. The method has the potential to become a useful tool for clinical management of patients with MS.Comment: Accepted by MICCAI201

    Applications of Deep Learning Techniques for Automated Multiple Sclerosis Detection Using Magnetic Resonance Imaging: A Review

    Get PDF
    Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physicians. MRI modalities provide physicians with fundamental information about the structure and function of the brain, which is crucial for the rapid diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) methods. In conventional machine learning, feature extraction, feature selection, and classification steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers whose values are automatically learn. In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis are investigated. The important preprocessing techniques employed in various works are analyzed. Most of the published papers on MS diagnosis using MRI modalities and DL are presented. The most significant challenges facing and future direction of automated diagnosis of MS using MRI modalities and DL techniques are also provided

    Interpretable and reliable artificial intelligence systems for brain diseases

    Get PDF
    International audienceIn artificial intelligence for medicine, more interpretable and reliable systems are needed. Here, we report on recent advances toward these aims in the field of brain diseases

    ResViT: Residual vision transformers for multi-modal medical image synthesis

    Full text link
    Multi-modal imaging is a key healthcare technology that is often underutilized due to costs associated with multiple separate scans. This limitation yields the need for synthesis of unacquired modalities from the subset of available modalities. In recent years, generative adversarial network (GAN) models with superior depiction of structural details have been established as state-of-the-art in numerous medical image synthesis tasks. GANs are characteristically based on convolutional neural network (CNN) backbones that perform local processing with compact filters. This inductive bias in turn compromises learning of contextual features. Here, we propose a novel generative adversarial approach for medical image synthesis, ResViT, to combine local precision of convolution operators with contextual sensitivity of vision transformers. ResViT employs a central bottleneck comprising novel aggregated residual transformer (ART) blocks that synergistically combine convolutional and transformer modules. Comprehensive demonstrations are performed for synthesizing missing sequences in multi-contrast MRI, and CT images from MRI. Our results indicate superiority of ResViT against competing methods in terms of qualitative observations and quantitative metrics

    Harnessing spatial homogeneity of neuroimaging data: patch individual filter layers for CNNs

    Full text link
    Neuroimaging data, e.g. obtained from magnetic resonance imaging (MRI), is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. Convolutional neural networks (CNNs), in contrast, have been specifically designed for highly heterogeneous data, such as natural images, by sliding convolutional filters over different positions in an image. Here, we suggest a new CNN architecture that combines the idea of hierarchical abstraction in neural networks with a prior on the spatial homogeneity of neuroimaging data: Whereas early layers are trained globally using standard convolutional layers, we introduce for higher, more abstract layers patch individual filters (PIF). By learning filters in individual image regions (patches) without sharing weights, PIF layers can learn abstract features faster and with fewer samples. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data. We demonstrate that CNNs using PIF layers result in higher accuracies, especially in low sample size settings, and need fewer training epochs for convergence. To the best of our knowledge, this is the first study which introduces a prior on brain MRI for CNN learning

    Automatic Axon and Myelin Segmentation of Microscopy Images and Morphometrics Extraction

    Get PDF
    Dans le système nerveux, la transmission des signaux électriques se fait par l’intermédiaire des axones de la matière blanche. La plupart de ces axones, aussi connus sous le nom de fibres nerveuses, sont entourés par la gaine de myéline. Le rôle principal de la gaine de myéline est d’accroître la vitesse de transmission du signal nerveux le long de l’axone, un élément crucial pour la communication sur de longues distances. Lors de pathologies démyélinisantes comme la sclérose en plaques, la gaine de myéline des axones du système nerveux central est attaquée par des cellules du système immunitaire. Ceci peut conduire à la dégénérescence de la myéline, qui peut se manifester de diverses façons : une perte du contenu en myéline, une diminution du nombre d’axones myélinisés ou même des dommages axonaux. La microscopie à haute résolution des tissus myélinisés offre l’avantage de pouvoir imager la microstructure du tissu au niveau cellulaire. L’extraction d’information quantitative sur la morphologie passe par la segmentation des axones et gaines de myélines composant le tissu sur les images microscopiques acquises. L’extraction de métriques morphologiques des fibres nerveuses à partir d’image microscopiques pourrait contribuer à plusieurs applications intéressantes : documentation de la morphométrie sur différentes espèces et tissus, étude des origines et effets des maladies démyélinisantes, et validation de nouveaux biomarqueurs d’Imagerie par Résonance Magnétique sensibles au contenu en myéline dans le tissu. L’objectif principal de ce projet de recherche est de concevoir, implémenter et valider un framework de segmentation automatique d’axones et de gaines de myéline sur des images microscopiques et d’en extraire des morphométriques pertinentes. Plusieurs approches de segmentation ont été explorées dans la littérature, mais la plupart ne sont pas totalement automatiques, sont conçues pour une modalité de microscopie spécifique, ou bien leur implémentation n’est pas publiquement disponible pour la communauté scientifique. Deux frameworks de segmentation ont été développés dans le cadre de ce projet : AxonSeg et AxonDeepSeg. Le framework AxonSeg (https://github.com/neuropoly/axonseg) se base sur une approche de traitement d’image classique pour la segmentation. Le pipeline de segmentation inclut une transformée de type extended-minima, un modèle d’analyse discriminante combinant des features de forme et d’intensité, un algorithme de détection de contours et un double algorithme de contours actifs. Le résultat de la segmentation est utilisé pour l’extraction de morphométriques. La validation du framework a été réalisée sur des échantillons de microscopie optique, microscopie électronique et microscopie Raman stimulée (CARS). Le framework AxonDeepSeg (https://github.com/neuropoly/axondeepseg) utilise plutôt une approche basée sur des réseaux neuronaux convolutifs. Un réseau convolutif a été conçu pour la segmentation sémantique des axones myélinisés. Un modèle de microscopie électronique à balayage (MEB) a été entraîné sur des échantillons de moelle épinière de rat et un modèle de microscopie électronique à transmission (MET) a été entraîné sur des échantillons de corps calleux de souris. Les deux modèles ont démontré une haute précision pixel par pixel sur les échantillons test (85% sur le MEB de rat, 81% sur le MEB d’humain, 95% sur le MET de souris, 84% sur le MET de macaque). On démontre également que les modèles entrainés sont robustes aux ajouts de bruit, au flou et aux changements d’intensité. Le modèle MEB de AxonDeepSeg a été utilisé pour segmenter une coupe transversale complète de moelle épinière de rat et les morphométriques extraites à partir des tracts de la matière blanche correspondaient bien aux tendances rapportées dans la littérature. AxonDeepSeg a démontré une plus grande précision au niveau de la segmentation lorsque comparé à AxonSeg. Les deux outils logiciels développés sont open source (licence MIT) et donc à disposition de la communauté scientifique. Des futures itérations sont prévues afin d’améliorer et d’étendre ce travail. Les objectifs à court terme sont l’entraînement de nouveaux modèles pour d’autres modalités de microscopie, l’entraînement sur des datasets plus larges afin d’améliorer la généralisation et la robustesse des modèles, et l’exploration de nouvelles architectures de réseaux neuronaux. De plus, les modèles de segmentations développés jusqu’à maintenant ont seulement été testés sur des images de tissus sains. Un développement futur important serait de tester la performance de ces modèles sur des échantillons démyélinisés.----------ABSTRACT In the nervous system, the transmission of electrical signals is ensured by the axons of the white matter. A large portion of these axons, also known as nerve fibers, is surrounded by a myelin sheath. The main role of the myelin sheath is to increase the transmission speed along the axons, which is crucial for long distance communication. In demyelinating diseases such as multiple sclerosis, the myelin sheath of the central nervous system is attacked by cells of the immune system. Myelin degeneration caused by such disorders can manifest itself in different ways at the microstructural level: loss of myelin content, decrease in the number of myelinated axons, or even axonal damage. High resolution microscopy of myelinated tissues can provide in-depth microstructural information about the tissue under study. Segmentation of the axon and myelin content of a microscopy image is a necessary step in order to extract quantitative morphological information from the tissue. Being able to extract morphometrics from the tissue would benefit several applications: document nerve morphometry across species or tissues, get a better understanding of the origins of demyelinating diseases, and validate novel magnetic resonance imaging biomarkers sensitive to myelin content. The main objective of this research project is to design, implement and validate an automatic axon and myelin segmentation framework for microscopy images and use it to extract relevant morphological metrics. Several segmentation approaches exist in the literature for similar applications, but most of them are not fully automatic, are designed to work on a specific microscopy modality and/or are not made available to the research community. Two segmentation frameworks were developed as part of this project: AxonSeg and AxonDeepSeg. The AxonSeg package (https://github.com/neuropoly/axonseg) uses a segmentation approach based on standard image processing. The segmentation pipeline includes an extendedminima transform, a discriminant analysis model based on shape and intensity features, an edge detection algorithm, and a double active contours step. The segmentation output is used to compute morphological metrics. Validation of the framework was performed on optical, electron and CARS microscopy. The AxonDeepSeg package (https://github.com/neuropoly/axondeepseg) uses a segmentation approach based on convolutional neural networks. A fully convolutional network architecture was designed for the semantic 3-class segmentation of myelinated axons. A scanning electron microscopy (SEM) model trained on rat spinal cord samples and a transmission electron microscopy (TEM) model trained on mice corpus callosum samples are presented. Both models presented high pixel-wise accuracy on test datasets (85% on rat SEM, 81% on human SEM, 95% on mice TEM and 84% on macaque TEM). We show that AxonDeepSeg models are robust to noise, blurring and intensity changes. AxonDeepSeg was used to segment a full rat spinal cord slice, and morphological metrics extracted from white matter tracks correlated well with the literature. The AxonDeepSeg framework presented a higher segmentation accuracy when compared to AxonSeg. Both AxonSeg and AxonDeepSeg are open source (MIT license) and thus freely available for use by the research community. Future iterations are planned to improve and extend this work. Training of new models for other microscopy modalities, training on larger datasets to improve generalization and robustness, and exploration of novel deep learning architectures are some of the short-term objectives. Moreover, the current segmentation models have only been tested on healthy tissues. Another important short-term objective would be to assess the performance of these models on demyelinated samples

    Is attention all you need in medical image analysis? A review

    Full text link
    Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. The main disadvantage of typical CNN models is that they ignore global pixel relationships within images, which limits their generalisation ability to understand out-of-distribution data with different 'global' information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments (Transf/Attention) which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced a comprehensive analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated

    Automatic detection of pathological regions in medical images

    Get PDF
    Medical images are an essential tool in the daily clinical routine for the detection, diagnosis, and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or X-ray imaging are used to visualize the manifestations of various diseases, providing physicians with valuable information. However, analyzing every single image by human experts is a tedious and laborious task. Deep learning methods have shown great potential to support this process, but many images are needed to train reliable neural networks. Besides the accuracy of the final method, the interpretability of the results is crucial for a deep learning method to be established. A fundamental problem in the medical field is the availability of sufficiently large datasets due to the variability of different imaging techniques and their configurations. The aim of this thesis is the development of deep learning methods for the automatic identification of anomalous regions in medical images. Each method is tailored to the amount and type of available data. In the first step, we present a fully supervised segmentation method based on denoising diffusion models. This requires a large dataset with pixel-wise manual annotations of the pathological regions. Due to the implicit ensemble characteristic, our method provides uncertainty maps to allow interpretability of the model’s decisions. Manual pixel-wise annotations face the problems that they are prone to human bias, hard to obtain, and often even unavailable. Weakly supervised methods avoid these issues by only relying on image-level annotations. We present two different approaches based on generative models to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative adversarial network and a denoising diffusion model. Both perform image-to-image translation between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be obtained by computing the difference between the original image of the diseased subject and the synthetic image of its healthy representation. In an extension of the diffusion-based anomaly detection method, we present a flexible framework to solve various image-to-image translation tasks. With this method, we managed to change the size of tumors in MR images, and we were able to add realistic pathologies to images of healthy subjects. Finally, we focus on a problem frequently occurring when working with MR images: If not enough data from one MR scanner are available, data from other scanners need to be considered. This multi-scanner setting introduces a bias between the datasets of different scanners, limiting the performance of deep learning models. We present a regularization strategy on the model’s latent space to overcome the problems raised by this multi-site setting
    corecore