1,687 research outputs found

    Learning to embed music and metadata for context-aware music recommendation

    Full text link
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. Contextual factors greatly influence users’ musical preferences, so they are beneficial remarkably to music recommendation and retrieval tasks. However, it still needs to be studied how to obtain and utilize the contextual information. In this paper, we propose a context-aware music recommendation approach, which can recommend music pieces appropriate for users’ contextual preferences for music. In analogy to matrix factorization methods for collaborative filtering, the proposed approach does not require music pieces to be represented by features ahead, but it can learn the representations from users’ historical listening records. Specifically, the proposed approach first learns music pieces’ embeddings (feature vectors in low-dimension continuous space) from music listening records and corresponding metadata. Then it infers and models users’ global and contextual preferences for music from their listening records with the learned embeddings. Finally, it recommends appropriate music pieces according to the target user’s preferences to satisfy her/his real-time requirements. Experimental evaluations on a real-world dataset show that the proposed approach outperforms baseline methods in terms of precision, recall, F1 score, and hitrate. Especially, our approach has better performance on sparse datasets

    Attentive Neural Architecture Incorporating Song Features For Music Recommendation

    Full text link
    Recommender Systems are an integral part of music sharing platforms. Often the aim of these systems is to increase the time, the user spends on the platform and hence having a high commercial value. The systems which aim at increasing the average time a user spends on the platform often need to recommend songs which the user might want to listen to next at each point in time. This is different from recommendation systems which try to predict the item which might be of interest to the user at some point in the user lifetime but not necessarily in the very near future. Prediction of the next song the user might like requires some kind of modeling of the user interests at the given point of time. Attentive neural networks have been exploiting the sequence in which the items were selected by the user to model the implicit short-term interests of the user for the task of next item prediction, however we feel that the features of the songs occurring in the sequence could also convey some important information about the short-term user interest which only the items cannot. In this direction, we propose a novel attentive neural architecture which in addition to the sequence of items selected by the user, uses the features of these items to better learn the user short-term preferences and recommend the next song to the user.Comment: Accepted as a paper at the 12th ACM Conference on Recommender Systems (RecSys 18

    DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation

    Full text link
    In recent years, there has been growing focus on the study of automated recommender systems. Music recommendation systems serve as a prominent domain for such works, both from an academic and a commercial perspective. A fundamental aspect of music perception is that music is experienced in temporal context and in sequence. In this work we present DJ-MC, a novel reinforcement-learning framework for music recommendation that does not recommend songs individually but rather song sequences, or playlists, based on a model of preferences for both songs and song transitions. The model is learned online and is uniquely adapted for each listener. To reduce exploration time, DJ-MC exploits user feedback to initialize a model, which it subsequently updates by reinforcement. We evaluate our framework with human participants using both real song and playlist data. Our results indicate that DJ-MC's ability to recommend sequences of songs provides a significant improvement over more straightforward approaches, which do not take transitions into account.Comment: -Updated to the most recent and completed version (to be presented at AAMAS 2015) -Updated author list. in Autonomous Agents and Multiagent Systems (AAMAS) 2015, Istanbul, Turkey, May 201
    • …
    corecore