2,963 research outputs found

    Learning Multimodal Graph-to-Graph Translation for Molecular Optimization

    Full text link
    We view molecular optimization as a graph-to-graph translation problem. The goal is to learn to map from one molecular graph to another with better properties based on an available corpus of paired molecules. Since molecules can be optimized in different ways, there are multiple viable translations for each input graph. A key challenge is therefore to model diverse translation outputs. Our primary contributions include a junction tree encoder-decoder for learning diverse graph translations along with a novel adversarial training method for aligning distributions of molecules. Diverse output distributions in our model are explicitly realized by low-dimensional latent vectors that modulate the translation process. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines

    Analyzing Learned Molecular Representations for Property Prediction

    Full text link
    Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows

    GIT-Mol: A Multi-modal Large Language Model for Molecular Science with Graph, Image, and Text

    Full text link
    Large language models have made significant strides in natural language processing, paving the way for innovative applications including molecular representation and generation. However, most existing single-modality approaches cannot capture the abundant and complex information in molecular data. Here, we introduce GIT-Mol, a multi-modal large language model that integrates the structure Graph, Image, and Text information, including the Simplified Molecular Input Line Entry System (SMILES) and molecular captions. To facilitate the integration of multi-modal molecular data, we propose GIT-Former, a novel architecture capable of mapping all modalities into a unified latent space. Our study develops an innovative any-to-language molecular translation strategy and achieves a 10%-15% improvement in molecular captioning, a 5%-10% accuracy increase in property prediction, and a 20% boost in molecule generation validity compared to baseline or single-modality models.Comment: 16 pages, 5 figure

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    BioBridge: Bridging Biomedical Foundation Models via Knowledge Graphs

    Full text link
    Foundation models (FMs) are able to leverage large volumes of unlabeled data to demonstrate superior performance across a wide range of tasks. However, FMs developed for biomedical domains have largely remained unimodal, i.e., independently trained and used for tasks on protein sequences alone, small molecule structures alone, or clinical data alone. To overcome this limitation of biomedical FMs, we present BioBridge, a novel parameter-efficient learning framework, to bridge independently trained unimodal FMs to establish multimodal behavior. BioBridge achieves it by utilizing Knowledge Graphs (KG) to learn transformations between one unimodal FM and another without fine-tuning any underlying unimodal FMs. Our empirical results demonstrate that BioBridge can beat the best baseline KG embedding methods (on average by around 76.3%) in cross-modal retrieval tasks. We also identify BioBridge demonstrates out-of-domain generalization ability by extrapolating to unseen modalities or relations. Additionally, we also show that BioBridge presents itself as a general purpose retriever that can aid biomedical multimodal question answering as well as enhance the guided generation of novel drugs

    MolFM: A Multimodal Molecular Foundation Model

    Full text link
    Molecular knowledge resides within three different modalities of information sources: molecular structures, biomedical documents, and knowledge bases. Effective incorporation of molecular knowledge from these modalities holds paramount significance in facilitating biomedical research. However, existing multimodal molecular foundation models exhibit limitations in capturing intricate connections between molecular structures and texts, and more importantly, none of them attempt to leverage a wealth of molecular expertise derived from knowledge graphs. In this study, we introduce MolFM, a multimodal molecular foundation model designed to facilitate joint representation learning from molecular structures, biomedical texts, and knowledge graphs. We propose cross-modal attention between atoms of molecular structures, neighbors of molecule entities and semantically related texts to facilitate cross-modal comprehension. We provide theoretical analysis that our cross-modal pre-training captures local and global molecular knowledge by minimizing the distance in the feature space between different modalities of the same molecule, as well as molecules sharing similar structures or functions. MolFM achieves state-of-the-art performance on various downstream tasks. On cross-modal retrieval, MolFM outperforms existing models with 12.13% and 5.04% absolute gains under the zero-shot and fine-tuning settings, respectively. Furthermore, qualitative analysis showcases MolFM's implicit ability to provide grounding from molecular substructures and knowledge graphs. Code and models are available on https://github.com/BioFM/OpenBioMed.Comment: 31 pages, 15 figures, and 15 table
    • …
    corecore