13,585 research outputs found

    Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition

    Full text link
    Attention-based learning for fine-grained image recognition remains a challenging task, where most of the existing methods treat each object part in isolation, while neglecting the correlations among them. In addition, the multi-stage or multi-scale mechanisms involved make the existing methods less efficient and hard to be trained end-to-end. In this paper, we propose a novel attention-based convolutional neural network (CNN) which regulates multiple object parts among different input images. Our method first learns multiple attention region features of each input image through the one-squeeze multi-excitation (OSME) module, and then apply the multi-attention multi-class constraint (MAMC) in a metric learning framework. For each anchor feature, the MAMC functions by pulling same-attention same-class features closer, while pushing different-attention or different-class features away. Our method can be easily trained end-to-end, and is highly efficient which requires only one training stage. Moreover, we introduce Dogs-in-the-Wild, a comprehensive dog species dataset that surpasses similar existing datasets by category coverage, data volume and annotation quality. This dataset will be released upon acceptance to facilitate the research of fine-grained image recognition. Extensive experiments are conducted to show the substantial improvements of our method on four benchmark datasets

    HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

    Full text link
    Pedestrian analysis plays a vital role in intelligent video surveillance and is a key component for security-centric computer vision systems. Despite that the convolutional neural networks are remarkable in learning discriminative features from images, the learning of comprehensive features of pedestrians for fine-grained tasks remains an open problem. In this study, we propose a new attention-based deep neural network, named as HydraPlus-Net (HP-net), that multi-directionally feeds the multi-level attention maps to different feature layers. The attentive deep features learned from the proposed HP-net bring unique advantages: (1) the model is capable of capturing multiple attentions from low-level to semantic-level, and (2) it explores the multi-scale selectiveness of attentive features to enrich the final feature representations for a pedestrian image. We demonstrate the effectiveness and generality of the proposed HP-net for pedestrian analysis on two tasks, i.e. pedestrian attribute recognition and person re-identification. Intensive experimental results have been provided to prove that the HP-net outperforms the state-of-the-art methods on various datasets.Comment: Accepted by ICCV 201

    Fast Fine-grained Image Classification via Weakly Supervised Discriminative Localization

    Full text link
    Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, which are time-consuming. (2) The training of discriminative localization depends on object or part annotations, which are heavily labor-consuming. It is highly challenging to address the two key limitations simultaneously, and existing methods only focus on one of them. Therefore, we propose a weakly supervised discriminative localization approach (WSDL) for fast fine-grained image classification to address the two limitations at the same time, and its main advantages are: (1) n-pathway end-to-end discriminative localization network is designed to improve classification speed, which simultaneously localizes multiple different discriminative regions for one image to boost classification accuracy, and shares full-image convolutional features generated by region proposal network to accelerate the process of generating region proposals as well as reduce the computation of convolutional operation. (2) Multi-level attention guided localization learning is proposed to localize discriminative regions with different focuses automatically, without using object and part annotations, avoiding the labor consumption. Different level attentions focus on different characteristics of the image, which are complementary and boost the classification accuracy. Both are jointly employed to simultaneously improve classification speed and eliminate dependence on object and part annotations. Compared with state-of-the-art methods on 2 widely-used fine-grained image classification datasets, our WSDL approach achieves the best performance.Comment: 13pages, submitted to IEEE Transactions on Circuits and Systems for Video Technology. arXiv admin note: text overlap with arXiv:1709.0829

    Fully Convolutional Attention Networks for Fine-Grained Recognition

    Full text link
    Fine-grained recognition is challenging due to its subtle local inter-class differences versus large intra-class variations such as poses. A key to address this problem is to localize discriminative parts to extract pose-invariant features. However, ground-truth part annotations can be expensive to acquire. Moreover, it is hard to define parts for many fine-grained classes. This work introduces Fully Convolutional Attention Networks (FCANs), a reinforcement learning framework to optimally glimpse local discriminative regions adaptive to different fine-grained domains. Compared to previous methods, our approach enjoys three advantages: 1) the weakly-supervised reinforcement learning procedure requires no expensive part annotations; 2) the fully-convolutional architecture speeds up both training and testing; 3) the greedy reward strategy accelerates the convergence of the learning. We demonstrate the effectiveness of our method with extensive experiments on four challenging fine-grained benchmark datasets, including CUB-200-2011, Stanford Dogs, Stanford Cars and Food-101

    Where to Focus: Deep Attention-based Spatially Recurrent Bilinear Networks for Fine-Grained Visual Recognition

    Full text link
    Fine-grained visual recognition typically depends on modeling subtle difference from object parts. However, these parts often exhibit dramatic visual variations such as occlusions, viewpoints, and spatial transformations, making it hard to detect. In this paper, we present a novel attention-based model to automatically, selectively and accurately focus on critical object regions with higher importance against appearance variations. Given an image, two different Convolutional Neural Networks (CNNs) are constructed, where the outputs of two CNNs are correlated through bilinear pooling to simultaneously focus on discriminative regions and extract relevant features. To capture spatial distributions among the local regions with visual attention, soft attention based spatial Long-Short Term Memory units (LSTMs) are incorporated to realize spatially recurrent yet visually selective over local input patterns. All the above intuitions equip our network with the following novel model: two-stream CNN layers, bilinear pooling layer, spatial recurrent layer with location attention are jointly trained via an end-to-end fashion to serve as the part detector and feature extractor, whereby relevant features are localized and extracted attentively. We show the significance of our network against two well-known visual recognition tasks: fine-grained image classification and person re-identification.Comment: 8 page

    Diversified Visual Attention Networks for Fine-Grained Object Classification

    Full text link
    Fine-grained object classification is a challenging task due to the subtle inter-class difference and large intra-class variation. Recently, visual attention models have been applied to automatically localize the discriminative regions of an image for better capturing critical difference and demonstrated promising performance. However, without consideration of the diversity in attention process, most of existing attention models perform poorly in classifying fine-grained objects. In this paper, we propose a diversified visual attention network (DVAN) to address the problems of fine-grained object classification, which substan- tially relieves the dependency on strongly-supervised information for learning to localize discriminative regions compared with attentionless models. More importantly, DVAN explicitly pursues the diversity of attention and is able to gather discriminative information to the maximal extent. Multiple attention canvases are generated to extract convolutional features for attention. An LSTM recurrent unit is employed to learn the attentiveness and discrimination of attention canvases. The proposed DVAN has the ability to attend the object from coarse to fine granularity, and a dynamic internal representation for classification is built up by incrementally combining the information from different locations and scales of the image. Extensive experiments con- ducted on CUB-2011, Stanford Dogs and Stanford Cars datasets have demonstrated that the proposed diversified visual attention networks achieve competitive performance compared to the state- of-the-art approaches, without using any prior knowledge, user interaction or external resource in training or testing

    Object-Part Attention Model for Fine-grained Image Classification

    Full text link
    Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.Comment: 14 pages, submitted to IEEE Transactions on Image Processin

    Cross-Modal Attentional Context Learning for RGB-D Object Detection

    Full text link
    Recognizing objects from simultaneously sensed photometric (RGB) and depth channels is a fundamental yet practical problem in many machine vision applications such as robot grasping and autonomous driving. In this paper, we address this problem by developing a Cross-Modal Attentional Context (CMAC) learning framework, which enables the full exploitation of the context information from both RGB and depth data. Compared to existing RGB-D object detection frameworks, our approach has several appealing properties. First, it consists of an attention-based global context model for exploiting adaptive contextual information and incorporating this information into a region-based CNN (e.g., Fast RCNN) framework to achieve improved object detection performance. Second, our CMAC framework further contains a fine-grained object part attention module to harness multiple discriminative object parts inside each possible object region for superior local feature representation. While greatly improving the accuracy of RGB-D object detection, the effective cross-modal information fusion as well as attentional context modeling in our proposed model provide an interpretable visualization scheme. Experimental results demonstrate that the proposed method significantly improves upon the state of the art on all public benchmarks.Comment: Accept as a regular paper to IEEE Transactions on Image Processin

    Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification

    Full text link
    Text in natural images contains rich semantics that are often highly relevant to objects or scene. In this paper, we focus on the problem of fully exploiting scene text for visual understanding. The main idea is combining word representations and deep visual features into a globally trainable deep convolutional neural network. First, the recognized words are obtained by a scene text reading system. Then, we combine the word embedding of the recognized words and the deep visual features into a single representation, which is optimized by a convolutional neural network for fine-grained image classification. In our framework, the attention mechanism is adopted to reveal the relevance between each recognized word and the given image, which further enhances the recognition performance. We have performed experiments on two datasets: Con-Text dataset and Drink Bottle dataset, that are proposed for fine-grained classification of business places and drink bottles, respectively. The experimental results consistently demonstrate that the proposed method combining textual and visual cues significantly outperforms classification with only visual representations. Moreover, we have shown that the learned representation improves the retrieval performance on the drink bottle images by a large margin, making it potentially useful in product search

    Fine-grained Visual-textual Representation Learning

    Full text link
    Fine-grained visual categorization is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle and local visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better categorization performance. However, not all parts are beneficial and indispensable for visual categorization, and the setting of part detector number heavily relies on prior knowledge as well as experimental validation. As is known to all, when we describe the object of an image via textual descriptions, we mainly focus on the pivotal characteristics, and rarely pay attention to common characteristics as well as the background areas. This is an involuntary transfer from human visual attention to textual attention, which leads to the fact that textual attention tells us how many and which parts are discriminative and significant to categorization. So textual attention could help us to discover visual attention in image. Inspired by this, we propose a fine-grained visual-textual representation learning (VTRL) approach, and its main contributions are: (1) Fine-grained visual-textual pattern mining devotes to discovering discriminative visual-textual pairwise information for boosting categorization performance through jointly modeling vision and text with generative adversarial networks (GANs), which automatically and adaptively discovers discriminative parts. (2) Visual-textual representation learning jointly combines visual and textual information, which preserves the intra-modality and inter-modality information to generate complementary fine-grained representation, as well as further improves categorization performance.Comment: 12 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT
    corecore