138 research outputs found

    Structure Selection from Streaming Relational Data

    Full text link
    Statistical relational learning techniques have been successfully applied in a wide range of relational domains. In most of these applications, the human designers capitalized on their background knowledge by following a trial-and-error trajectory, where relational features are manually defined by a human engineer, parameters are learned for those features on the training data, the resulting model is validated, and the cycle repeats as the engineer adjusts the set of features. This paper seeks to streamline application development in large relational domains by introducing a light-weight approach that efficiently evaluates relational features on pieces of the relational graph that are streamed to it one at a time. We evaluate our approach on two social media tasks and demonstrate that it leads to more accurate models that are learned faster

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field

    Automorphism Groups of Graphical Models and Lifted Variational Inference

    Full text link
    Using the theory of group action, we first introduce the concept of the automorphism group of an exponential family or a graphical model, thus formalizing the general notion of symmetry of a probabilistic model. This automorphism group provides a precise mathematical framework for lifted inference in the general exponential family. Its group action partitions the set of random variables and feature functions into equivalent classes (called orbits) having identical marginals and expectations. Then the inference problem is effectively reduced to that of computing marginals or expectations for each class, thus avoiding the need to deal with each individual variable or feature. We demonstrate the usefulness of this general framework in lifting two classes of variational approximation for MAP inference: local LP relaxation and local LP relaxation with cycle constraints; the latter yields the first lifted inference that operate on a bound tighter than local constraints. Initial experimental results demonstrate that lifted MAP inference with cycle constraints achieved the state of the art performance, obtaining much better objective function values than local approximation while remaining relatively efficient.Comment: Extended version of the paper to appear in Statistical Relational AI (StaRAI-12) workshop at UAI '1
    corecore