354 research outputs found

    Fast multi-image matching via density-based clustering

    Full text link
    We consider the problem of finding consistent matches across multiple images. Previous state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we propose a clustering-based formulation. We first rigorously show its equivalence with the previous one, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. We use the density to order the points in a tree, and then extract the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some bechmarks), and can scale to large datasets (with more than twenty thousands features).Accepted manuscriptSupporting documentatio

    GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints

    Full text link
    Learned local descriptors based on Convolutional Neural Networks (CNNs) have achieved significant improvements on patch-based benchmarks, whereas not having demonstrated strong generalization ability on recent benchmarks of image-based 3D reconstruction. In this paper, we mitigate this limitation by proposing a novel local descriptor learning approach that integrates geometry constraints from multi-view reconstructions, which benefits the learning process in terms of data generation, data sampling and loss computation. We refer to the proposed descriptor as GeoDesc, and demonstrate its superior performance on various large-scale benchmarks, and in particular show its great success on challenging reconstruction tasks. Moreover, we provide guidelines towards practical integration of learned descriptors in Structure-from-Motion (SfM) pipelines, showing the good trade-off that GeoDesc delivers to 3D reconstruction tasks between accuracy and efficiency.Comment: Accepted to ECCV'1

    End2End Multi-View Feature Matching with Differentiable Pose Optimization

    Full text link
    Erroneous feature matches have severe impact on subsequent camera pose estimation and often require additional, time-costly measures, like RANSAC, for outlier rejection. Our method tackles this challenge by addressing feature matching and pose optimization jointly. To this end, we propose a graph attention network to predict image correspondences along with confidence weights. The resulting matches serve as weighted constraints in a differentiable pose estimation. Training feature matching with gradients from pose optimization naturally learns to down-weight outliers and boosts pose estimation on image pairs compared to SuperGlue by 6.7% on ScanNet. At the same time, it reduces the pose estimation time by over 50% and renders RANSAC iterations unnecessary. Moreover, we integrate information from multiple views by spanning the graph across multiple frames to predict the matches all at once. Multi-view matching combined with end-to-end training improves the pose estimation metrics on Matterport3D by 18.5% compared to SuperGlue.Comment: ICCV 2023, project page: https://barbararoessle.github.io/e2e_multi_view_matching , video: https://youtu.be/uuLb6GfM9C

    The Atlas Structure of Images

    Get PDF
    Many operations of vision require image regions to be isolated and inter-related. This is challenging when they are different in detail and extent. Practical methods of Computer Vision approach this through the tools of downsampling, pyramids, cropping and patches. In this paper we develop an ideal geometric structure for this, compatible with the existing scale space model of image measurement. Its elements are apertures which view the image like fuzzy-edged portholes of frosted glass. We establish containment and cause/effect relations between apertures, and show that these link them into cross-scale atlases. Atlases formed of Gaussian apertures are shown to be a continuous version of the image pyramid used in Computer Vision, and allow various types of image description to naturally be expressed within their framework. We show that views through Gaussian apertures are approximately equivalent to the jets of derivative of Gaussian filter responses that form part of standard Scale Space theory. This supports a view of the simple cells of mammalian V1 as implementing a system of local views of the retinal image of varying extent and resolution. As a worked example we develop a keypoint descriptor scheme that outperforms previous schemes that do not make use of learning

    NCP: Neural Correspondence Prior for Effective Unsupervised Shape Matching

    Full text link
    We present Neural Correspondence Prior (NCP), a new paradigm for computing correspondences between 3D shapes. Our approach is fully unsupervised and can lead to high-quality correspondences even in challenging cases such as sparse point clouds or non-isometric meshes, where current methods fail. Our first key observation is that, in line with neural priors observed in other domains, recent network architectures on 3D data, even without training, tend to produce pointwise features that induce plausible maps between rigid or non-rigid shapes. Secondly, we show that given a noisy map as input, training a feature extraction network with the input map as supervision tends to remove artifacts from the input and can act as a powerful correspondence denoising mechanism, both between individual pairs and within a collection. With these observations in hand, we propose a two-stage unsupervised paradigm for shape matching by (i) performing unsupervised training by adapting an existing approach to obtain an initial set of noisy matches, and (ii) using these matches to train a network in a supervised manner. We demonstrate that this approach significantly improves the accuracy of the maps, especially when trained within a collection. We show that NCP is data-efficient, fast, and achieves state-of-the-art results on many tasks. Our code can be found online: https://github.com/pvnieo/NCP.Comment: NeurIPS 2022, 10 pages, 9 figure

    Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical Synthesis and Performance Analysis on Classic and Deep Learning Algorithms

    Full text link
    Recent advances in computer vision and deep learning have shown promising performance in estimating rigid/similarity transformation between unregistered point clouds of complex objects and scenes. However, their performances are mostly evaluated using a limited number of datasets from a single sensor (e.g. Kinect or RealSense cameras), lacking a comprehensive overview of their applicability in photogrammetric 3D mapping scenarios. In this work, we provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods, where we analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources. The quantitative analysis allows for exploring the strengths, applicability, challenges, and future trends of these methods. In contrast to existing analysis works that introduce point cloud registration as a holistic process, our experimental analysis is based on its inherent two-step process to better comprehend these approaches including feature/keypoint-based initial coarse registration and dense fine registration through cloud-to-cloud (C2C) optimization. More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested. We observed that the success rate of most of the algorithms are fewer than 40% over the datasets we tested and there are still are large margin of improvement upon existing algorithms concerning 3D sparse corresopondence search, and the ability to register point clouds with complex geometry and occlusions. With the evaluated statistics on three datasets, we conclude the best-performing methods for each step and provide our recommendations, and outlook future efforts.Comment: 7 figure
    corecore