253 research outputs found

    A latent rhythm complexity model for attribute-controlled drum pattern generation

    Get PDF
    AbstractMost music listeners have an intuitive understanding of the notion of rhythm complexity. Musicologists and scientists, however, have long sought objective ways to measure and model such a distinctively perceptual attribute of music. Whereas previous research has mainly focused on monophonic patterns, this article presents a novel perceptually-informed rhythm complexity measure specifically designed for polyphonic rhythms, i.e., patterns in which multiple simultaneous voices cooperate toward creating a coherent musical phrase. We focus on drum rhythms relating to the Western musical tradition and validate the proposed measure through a perceptual test where users were asked to rate the complexity of real-life drumming performances. Hence, we propose a latent vector model for rhythm complexity based on a recurrent variational autoencoder tasked with learning the complexity of input samples and embedding it along one latent dimension. Aided by an auxiliary adversarial loss term promoting disentanglement, this effectively regularizes the latent space, thus enabling explicit control over the complexity of newly generated patterns. Trained on a large corpus of MIDI files of polyphonic drum recordings, the proposed method proved capable of generating coherent and realistic samples at the desired complexity value. In our experiments, output and target complexities show a high correlation, and the latent space appears interpretable and continuously navigable. On the one hand, this model can readily contribute to a wide range of creative applications, including, for instance, assisted music composition and automatic music generation. On the other hand, it brings us one step closer toward achieving the ambitious goal of equipping machines with a human-like understanding of perceptual features of music

    Intelligent Tools for Drum Loop Retrieval and Generation

    Get PDF
    Large libraries of musical data are an increasingly common feature of contemporary computer-based music production practice, with producers often relying heavily on large, curated libraries of data such as loops and samples when making tracks. Drum loop libraries are a particularly common type of library in this context. However, their typically large size, coupled with often poor user interfaces means navigating and exploring them in a fast, easy and enjoyable way is not always possible. Additionally, writing a drum part for a whole track out of many drum loops can be a laborious process, requiring manually editing of many drum loops. The aim of this thesis is to contribute novel techniques based on Music Information Retrieval (MIR) and machine learning that make the process of writing drum tracks using drum loops faster, easier and more enjoyable. We primarily focus on tools for drum loop library navigation and exploration, with additional work on assistive generation of drum loops. We contribute proof-of-concept and prototype tools, Groove Explorer and Groove Explorer 2, for drum loop library exploration based on an interface applying similarity-based visual arrangement of drum loops. Work on Groove Explorer suggested that there were limitations in the existing state-of-the-art approaches to drum loop similarity modelling that must be addressed for tools such as ours to be successful. This was verified via a perceptual study, which identified possible areas of improvement in similarity modelling. Following this, we develop and evaluate a set of novel models for drum loop analysis that capture rhythmic structure and the perceptually relevant qualities of microtiming. Drawing from this, a new approach to drum loop similarity modelling was verified in context as part of Groove Explorer 2, which we evaluated via a user study. The results indicated that our approach could make drum loop library exploration faster, easier and more enjoyable. We finally present an automatic drum loop generation system, jaki, that uses a novel approach for drum loop generation according to user constraints, that could extend Groove Explorer 2 as a drum loop editing and composition tool. Combined, these two systems could offer an end-to-end solution to improved writing of drum tracks

    INTERACTIVE SONIFICATION STRATEGIES FOR THE MOTION AND EMOTION OF DANCE PERFORMANCES

    Get PDF
    The Immersive Interactive SOnification Platform, or iISoP for short, is a research platform for the creation of novel multimedia art, as well as exploratory research in the fields of sonification, affective computing, and gesture-based user interfaces. The goal of the iISoP’s dancer sonification system is to “sonify the motion and emotion” of a dance performance via musical auditory display. An additional goal of this dissertation is to develop and evaluate musical strategies for adding layer of emotional mappings to data sonification. The result of the series of dancer sonification design exercises led to the development of a novel musical sonification framework. The overall design process is divided into three main iterative phases: requirement gathering, prototype generation, and system evaluation. For the first phase help was provided from dancers and musicians in a participatory design fashion as domain experts in the field of non-verbal affective communication. Knowledge extraction procedures took the form of semi-structured interviews, stimuli feature evaluation, workshops, and think aloud protocols. For phase two, the expert dancers and musicians helped create test-able stimuli for prototype evaluation. In phase three, system evaluation, experts (dancers, musicians, etc.) and novice participants were recruited to provide subjective feedback from the perspectives of both performer and audience. Based on the results of the iterative design process, a novel sonification framework that translates motion and emotion data into descriptive music is proposed and described

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Distributed Networks of Listening and Sounding: 20 Years of Telematic Musicking

    Get PDF
    This paper traces a twenty-year arc of my performance and compositional practice in the medium of telematic music, focusing on a distinct approach to fostering interdependence and emergence through the integration of listening strategies, electroacoustic improvisation, pre-composed structures, blended real/virtual acoustics, networked mutual-influence, shared signal transformations, gesture-concepts and machine agencies. Communities of collaboration and exchange over this time period are discussed, which span both pre- and post-pandemic approaches to the medium that range from metaphors of immersion and dispersion to diffraction

    Bendit_I/O: A System for Extending Mediated and Networked Performance Techniques to Circuit-Bent Devices

    Get PDF
    Circuit bending—the act of modifying a consumer device\u27s internal circuitry in search of new, previously-unintended responses—provides artists with a chance to subvert expectations for how a certain piece of hardware should be utilized, asking them to view everyday objects as complex electronic instruments. Along with the ability to create avant-garde instruments from unique and nostalgic sound sources, the practice of circuit bending serves as a methodology for exploring the histories of discarded objects through activism, democratization, and creative resurrection. While a rich history of circuit bending continues to inspire artists today, the recent advent of smart musical instruments and the growing number of hybrid tools available for creating connective musical experiences through networks asks us to reconsider the ways in which repurposed devices can continue to play a role in modern sonic art. Bendit_I/O serves as a synthesis of the technologies and aesthetics of the circuit bending and Networked Musical Performance (NMP) practices. The framework extends techniques native to the practices of telematic and network art to hacked hardware so that artists can design collaborative and mediated experiences that incorporate old devices into new realities. Consisting of user-friendly hardware and software components, Bendit_I/O aims to be an entry point for novice artists into both of the creative realms it brings together. This document presents details on the components of the Bendit_I/O framework along with an analysis of their use in three new compositions. Additional research serves to place the framework in historical context through literature reviews of previous work undertaken in the circuit bending and networked musical performance practices. Additionally, a case is made for performing hacked consumer hardware across a wireless network, emphasizing how extensions to current circuit bending and NMP practices provide the ability to probe our relationships with hardware through collaborative, mediated, and multimodal methods
    • …
    corecore