466,736 research outputs found

    Voice to Sign Language Translator System

    Get PDF
    The process of learning the sign language may be cumbersome to some, and therefore, this project proposes a solution to this problem by providing a voice (English Language) to sign language translator system solution using Speech and image processing. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach. In this approach, computer first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set then will be stored as template inside the database. The system will perform the recognition process through matching the parameter set of the input speech with the stored template. Pattern recognition will be used for this project because it has the advantage of flexibility in terms of storage and matching process. In addition, its implementation is easier as compared to other methods. This paper discusses on the solution to the problem stated above, as well as the methodologies used to develop the system

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org

    An active learning approach for statistical spoken language understanding

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-25085-9_67In general, large amount of segmented and labeled data is needed to estimate statistical language understanding systems. In recent years, different approaches have been proposed to reduce the segmentation and labeling effort by means of unsupervised o semi-supervised learning techniques. We propose an active learning approach to the estimation of statistical language understanding models that involves the transcription, labeling and segmentation of a small amount of data, along with the use of raw data. We use this approach to learn the understanding component of a Spoken Dialog System. Some experiments that show the appropriateness of our approach are also presented.Work partially supported by the Spanish MICINN under contract TIN2008-06856-C05-02, and by the Vicerrectorat d’Investigació, Desenvolupament i Innovació of the Universitat Politècnica de València under contract 20100982.García Granada, F.; Hurtado Oliver, LF.; Sanchís Arnal, E.; Segarra Soriano, E. (2011). An active learning approach for statistical spoken language understanding. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 7042:565-572. https://doi.org/10.1007/978-3-642-25085-9_67S5655727042De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)Fraser, M., Gilbert, G.: Simulating speech systems. Computer Speech and Language 5, 81–99 (1991)Gotab, P., Bechet, F., Damnati, G.: Active learning for rule-based and corpus-based spoken labguage understanding moldes. In: IEEE Workshop Automatic Speech Recognition and Understanding (ASRU 2009), pp. 444–449 (2009)Gotab, P., Damnati, G., Becher, F., Delphin-Poulat, L.: Online slu model adaptation with a partial oracle. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 2862–2865 (2010)He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Riccardi, G., Hakkani-Tur, D.: Active learning: theory and applications to automatic speech recognition. IEEE Transactions on Speech and Audio Processing 13(4), 504–511 (2005)Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. International Journal of Pattern Recognition and Artificial Intelligence 16(3), 301–307 (2002)Tur, G., Hakkani-Tr, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005

    Character-Based Handwritten Text Recognition of Multilingual Documents

    Full text link
    [EN] An effective approach to transcribe handwritten text documents is to follow a sequential interactive approach. During the supervision phase, user corrections are incorporated into the system through an ongoing retraining process. In the case of multilingual documents with a high percentage of out-of-vocabulary (OOV) words, two principal issues arise. On the one hand, a minor yet important matter for this interactive approach is to identify the language of the current text line image to be transcribed, as a language dependent recognisers typically performs better than a monolingual recogniser. On the other hand, word-based language models suffer from data scarcity in the presence of a large number of OOV words, degrading their estimation and affecting the performance of the transcription system. In this paper, we successfully tackle both issues deploying character-based language models combined with language identification techniques on an entire 764-page multilingual document. The results obtained significantly reduce previously reported results in terms of transcription error on the same task, but showed that a language dependent approach is not effective on top of character-based recognition of similar languages.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 287755. Also supported by the Spanish Government (MIPRCV ”Consolider Ingenio 2010”, iTrans2 TIN2009-14511, MITTRAL TIN2009-14633-C03-01 and FPU AP2007-0286) and the Generalitat Valenciana (Prometeo/2009/014).Del Agua Teba, MA.; Serrano Martinez Santos, N.; Civera Saiz, J.; Juan Císcar, A. (2012). Character-Based Handwritten Text Recognition of Multilingual Documents. Communications in Computer and Information Science. 328:187-196. https://doi.org/10.1007/978-3-642-35292-8_20S187196328Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 855–868 (2009)Serrano, N., Tarazón, L., Pérez, D., Ramos-Terrades, O., Juan, A.: The GIDOC prototype. In: Proc. of the 10th Int. Workshop on Pattern Recognition in Information Systems (PRIS 2010), Funchal, Portugal, pp. 82–89 (2010)Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from Partially Supervised Handwritten Text Transcriptions. In: Proc. of the 11th Int. Conf. on Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal Interaction (ICMI-MLMI 2009), Cambridge, MA, USA, pp. 289–292 (2009)Serrano, N., Sanchis, A., Juan, A.: Balancing error and supervision effort in interactive-predictive handwriting recognition. In: Proc. of the Int. Conf. on Intelligent User Interfaces (IUI 2010), Hong Kong, China, pp. 373–376 (2010)Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies in handwritten text recognition. In: Proc. of the 12th Int. Conf. on Multimodal Interfaces and the 7th Workshop on Machine Learning for Multimodal Interaction (ICMI-MLMI 2010), Beijing, China, vol. (86) (November 2010)Pérez, D., Tarazón, L., Serrano, N., Castro, F., Ramos-Terrades, O., Juan, A.: The GERMANA database. In: Proc. of the 10th Int. Conf. on Document Analysis and Recognition (ICDAR 2009), Barcelona, Spain, pp. 301–305 (2009)del Agua, M.A., Serrano, N., Juan, A.: Language Identification for Interactive Handwriting Transcription of Multilingual Documents. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 596–603. Springer, Heidelberg (2011)Ghosh, D., Dube, T., Shivaprasad, P.: Script Recognition: A Review. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 32(12), 2142–2161 (2010)Bisani, M., Ney, H.: Open vocabulary speech recognition with flat hybrid models. In: Proc. of the European Conf. on Speech Communication and Technology, pp. 725–728 (2005)Szoke, I., Burget, L., Cernocky, J., Fapso, M.: Sub-word modeling of out of vocabulary words in spoken term detection. In: IEEE Spoken Language Technology Workshop, SLT 2008, pp. 273–276 (December 2008)Brakensiek, A., Rottl, J., Kosmala, A., Rigoll, G.: Off-Line handwriting recognition using various hybrid modeling techniques and character N-Grams. In: 7th International Workshop on Frontiers in Handwritten Recognition, pp. 343–352 (2000)Zamora, F., Castro, M.J., España, S., Gorbe, J.: Unconstrained offline handwriting recognition using connectionist character n-grams. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (July 2010)Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for off-line handwriting recognition. IJDAR, 39–46 (2002)Schultz, T., Kirchhoff, K.: Multilingual Speech Processing (2006)Stolcke, A.: SRILM – an extensible language modeling toolkit. In: Proc. of ICSLP 2002, pp. 901–904 (September 2002)Rybach, D., Gollan, C., Heigold, G., Hoffmeister, B., Lööf, J., Schlüter, R., Ney, H.: The RWTH aachen university open source speech recognition system. In: Interspeech, Brighton, U.K., pp. 2111–2114 (September 2009)Efron, B., Tibshirani, R.J.: An Introduction to Bootstrap. Chapman & Hall/CRC (1994

    A Hybrid Rough Sets K-Means Vector Quantization Model For Neural Networks Based Arabic Speech Recognition

    Get PDF
    Speech is a natural, convenient and rapid means of human communication. The abil ity to respond to spoken language is of special importance in computer application wherein the user cannot use his/her limbs in a proper way, and may be useful in office automation systems. It can help in developing control systems for many applications such as in telephone assistance systems. Rough sets theory represents a mathematical approach to vagueness and uncertainty. Data analysis, data reduction, approxi mate classification, machine learning, and discovery of pattern in data are functions performed by a rough sets analysis. It was one of the first non-statistical methodologies of data analysis. It extends classical set theory by incorporating into the set model the notion of classification as indiscernibility relation.In previous work rough sets approach application to the field of speech recognition was limited to the pattern matching stage. That is, to use training speech patterns to generate classification rules that can be used later to classify input words patterns. In this thesis rough sets approach was used in the preprocessing stages, namely in the vector quantization operation in which feature vectors are quantized or classified to a finite set of codebook classes. Classification rules were generated from training feature vectors set, and a modified form of the standard voter classification algorithm, that use the rough sets generated rules, was applied. A vector quantization model that incorporate rough sets attribute reduction and rules generation with a modified version of the K-means clustering algorithm was developed, implemented and tested as a part of a speech recognition framework, in which the Learning Vector Quantization (LVQ) neural network model was used in the pattern matching stage. In addition to the Arabic speech data that used in the original experiments, for both speaker dependant and speaker independent tests, more verification experiments were conducted using the TI20 speech data. The rough sets vector quantization model proved its usefulness in the speech recognition framework, however it can be extended to different applications that involve large amounts of data such as speaker verification

    Interactive handwriting recognition with limited user effort

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10032-013-0204-5[EN] Transcription of handwritten text in (old) documents is an important, time-consuming task for digital libraries. Although post-editing automatic recognition of handwritten text is feasible, it is not clearly better than simply ignoring it and transcribing the document from scratch. A more effective approach is to follow an interactive approach in which both the system is guided by the user, and the user is assisted by the system to complete the transcription task as efficiently as possible. Nevertheless, in some applications, the user effort available to transcribe documents is limited and fully supervision of the system output is not realistic. To circumvent these problems, we propose a novel interactive approach which efficiently employs user effort to transcribe a document by improving three different aspects. Firstly, the system employs a limited amount of effort to solely supervise recognised words that are likely to be incorrect. Thus, user effort is efficiently focused on the supervision of words for which the system is not confident enough. Secondly, it refines the initial transcription provided to the user by recomputing it constrained to user supervisions. In this way, incorrect words in unsupervised parts can be automatically amended without user supervision. Finally, it improves the underlying system models by retraining the system from partially supervised transcriptions. In order to prove these statements, empirical results are presented on two real databases showing that the proposed approach can notably reduce user effort in the transcription of handwritten text in (old) documents.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 287755 (transLectures). Also supported by the Spanish Government (MICINN, MITyC, "Plan E", under Grants MIPRCV "Consolider Ingenio 2010", MITTRAL (TIN2009-14633-C03-01), erudito.com (TSI-020110-2009-439), iTrans2 (TIN2009-14511), and FPU (AP2007-02867), and the Generalitat Valenciana (Grants Prometeo/2009/014 and GV/2010/067).Serrano Martinez Santos, N.; Giménez Pastor, A.; Civera Saiz, J.; Sanchis Navarro, JA.; Juan Císcar, A. (2014). Interactive handwriting recognition with limited user effort. International Journal on Document Analysis and Recognition. 17(1):47-59. https://doi.org/10.1007/s10032-013-0204-5S4759171Agua, M., Serrano, N., Civera, J., Juan, A.: Character-based handwritten text recognition of multilingual documents. In: Proceedings of Advances in Speech and Language Technologies for Iberian Languages (IBERSPEECH 2012), Madrid (Spain), pp. 187–196 (2012)Ahn, L.V., Maurer, B., Mcmillen, C., Abraham, D., Blum, M.: reCAPTCHA: human-based character recognition via web security measures. Science 321, 1465–1468 (2008)Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A.L., Ney, H., Tomás, J., Vidal, E.: Statistical approaches to computer-assisted translation. Comput. Linguist. 35(1), 3–28 (2009)Bertolami, R., Bunke, H.: Hidden markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognit. 41, 3452–3460 (2008)Bunke, H., Bengio, S., Vinciarelli, A.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 709–720 (2004)Dreuw, P., Jonas, S., Ney, H.: White-space models for offline Arabic handwriting recognition. In: Proceedings of the 19th International Conference on, Pattern Recognition, pp. 1–4 (2008)Efron, B., Tibshirani, R.J.: An introduction to bootstrap. Chapman and Hall/CRC, London (1994)Fischer, A., Wuthrich, M., Liwicki, M., Frinken, V., Bunke, H., Viehhauser, G., Stolz, M.: Automatic transcription of handwritten medieval documents. In: Proceedings of the 15th International Conference on Virtual Systems and Multimedia, pp. 137–142 (2009)Frinken, V., Bunke, H.: Evaluating retraining rules for semi-supervised learning in neural network based cursive word recognition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona (Spain), pp. 31–35 (2009)Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)Hakkani-Tür, D., Riccardi, G., Tur, G.: An active approach to spoken language processing. ACM Trans. Speech Lang. Process. 3, 1–31 (2006)Kristjannson, T., Culotta, A., Viola, P., McCallum, A.: Interactive information extraction with constrained conditional random fields. In: Proceedings of the 19th Natural Conference on Artificial Intelligence, San Jose, CA (USA), pp. 412–418 (2004)Laurence Likforman-Sulem, A.Z., Taconet, B.: Text line segmentation of historical documents: a survey. Int. J. Doc. Anal. Recognit. 9, 123–138 (2007)Le Bourgeois, F., Emptoz, H.: Debora: digital access to books of the renaissance. Int. J. Doc. Anal. Recognit. 9, 193–221 (2007)Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)Neal, R.M., Hinton, G.E.: Learning in graphical models. In: A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants, Chap. MIT Press, Cambridge, MA, USA, pp. 355–368 (1999)Pérez, D., Tarazón, L., Serrano, N., Ramos-Terrades, O., Juan, A.: The GERMANA database. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona (Spain), pp. 301–305 (2009)Plötz, T., Fink, G.A.: Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recognit. 12(4), 269–298 (2009)Quiniou, S., Cheriet, M., Anquetil, E.: Error handling approach using characterization and correction steps for handwritten document analysis. Int. J. Doc. Anal. Recognit. 15(2), 125–141 (2012)Rodríguez, L., García-Varea, I., Vidal, E.: Multi-modal computer assisted speech transcription. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ACM, New York, NY, USA, pp. 30:1–30:7 (2010)Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from partially supervised handwritten text transcriptions. In: Proceedings of the 11th International Conference on Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal Interaction, Cambridge, MA (USA), pp. 289–292 (2009)Serrano, N., Castro, F., Juan, A.: The RODRIGO database. In: Proceedings of the 7th International Conference on Language Resources and Evaluation, Valleta (Malta), pp. 2709–2712 (2010)Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies for handwritten text transcription. In: Proceedings of the 12th International Conference on Multimodal Interfaces and the 7th Workshop on Machine Learning for Multimodal, Interaction, Beijing (China) (2010)Serrano, N., Sanchis, A., Juan, A.: Balancing error and supervision effort in interactive-predictive handwriting recognition. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, Hong Kong (China), pp. 373–376 (2010)Serrano, N., Tarazón, L., Pérez, D., Ramos-Terrades, O., Juan, A.: The GIDOC prototype. In: Proceedings of the 10th International Workshop on Pattern Recognition in Information Systems, Funchal (Portugal), pp. 82–89 (2010)Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)Tarazón, L., Pérez, D., Serrano, N., Alabau, V., Ramos-Terrades, O., Sanchis, A., Juan, A.: Confidence measures for error correction in interactive transcription of handwritten text. In: Proceedings of the 15th International Conference on Image Analysis, Processing, Vietri sul Mare (Italy) (2009)Toselli, A., Juan, A., Keysers, D., González, J., Salvador, I., Ney, H., Vidal, E., Casacuberta, F.: Integrated handwriting recognition and interpretation using finite-state models. Int. J. Pattern Recognit. Artif. Intell. 18(4), 519–539 (2004)Toselli, A., Romero, V., Rodríguez, L., Vidal, E.: Computer assisted transcription of handwritten text. In: Proceedings of the 9th International Conference on Document Analysis and Recognition, Curitiba (Brazil), pp. 944–948 (2007)Valor, J., Pérez, A., Civera, J., Juan, A.: Integrating a state-of-the-art ASR system into the opencast Matterhorn platform. In: Proceedings of the Advances in Speech and Language Technologies for Iberian Languages (IBERSPEECH 2012), Madrid (Spain), pp. 237–246 (2012)Wessel, F., Ney, H.: Unsupervised training of acoustic models for large vocabulary continuous speech recognition. IEEE Trans Speech Audio Process 13(1), 23–31 (2005

    Action Class Relation Detection and Classification Across Multiple Video Datasets

    Full text link
    The Meta Video Dataset (MetaVD) provides annotated relations between action classes in major datasets for human action recognition in videos. Although these annotated relations enable dataset augmentation, it is only applicable to those covered by MetaVD. For an external dataset to enjoy the same benefit, the relations between its action classes and those in MetaVD need to be determined. To address this issue, we consider two new machine learning tasks: action class relation detection and classification. We propose a unified model to predict relations between action classes, using language and visual information associated with classes. Experimental results show that (i) pre-trained recent neural network models for texts and videos contribute to high predictive performance, (ii) the relation prediction based on action label texts is more accurate than based on videos, and (iii) a blending approach that combines predictions by both modalities can further improve the predictive performance in some cases.Comment: Accepted to Pattern Recognition Letters. 12 pages, 4 figure

    Handwriting recognition by using deep learning to extract meaningful features

    Full text link
    [EN] Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system. The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested with the IAM Database, achieving a considerable improvement.Work partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R.Pastor Pellicer, J.; Castro-Bleda, MJ.; España Boquera, S.; Zamora-Martinez, FJ. (2019). Handwriting recognition by using deep learning to extract meaningful features. AI Communications. 32(2):101-112. https://doi.org/10.3233/AIC-170562S101112322Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15(11), 937-946. doi:10.1093/bioinformatics/15.11.937LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Bertolami, R., & Bunke, H. (2008). Hidden Markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognition, 41(11), 3452-3460. doi:10.1016/j.patcog.2008.04.003Bianne-Bernard, A.-L., Menasri, F., Mohamad, R. A.-H., Mokbel, C., Kermorvant, C., & Likforman-Sulem, L. (2011). Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2066-2080. doi:10.1109/tpami.2011.22C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.T. Bluche, H. Ney and C. Kermorvant, Feature extraction with convolutional neural networks for handwritten word recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 285–289.T. Bluche, H. Ney and C. Kermorvant, Tandem HMM with convolutional neural network for handwritten word recognition, in: 38th International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 2390–2394.T. Bluche, H. Ney and C. Kermorvant, A comparison of sequence-trained deep neural networks and recurrent neural networks optical modeling for handwriting recognition, in: Slsp-2014, 2014, pp. 1–12.H. Bourlard and N. Morgan, Connectionist Speech Recognition – A Hybrid Approach, Series in Engineering and Computer Science, Vol. 247, Kluwer Academic, 1994.Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114H. Bunke, Recognition of cursive roman handwriting – past, present and future, in: International Conference on Document Analysis and Recognition, Vol. 1, 2003, pp. 448–459.E. Caillault, C. Viard-Gaudin and A. Rahim Ahmad, MS-TDNN with global discriminant trainings, in: International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 856–860.P. Doetsch, M. Kozielski and H. Ney, Fast and robust training of recurrent neural networks for offline handwriting recognition, in: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 279–284.P. Dreuw, P. Doetsch, C. Plahl and H. Ney, Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition, in: International Conference on Image Processing (ICIP), 2011, pp. 3541–3544.Dreuw, P., Heigold, G., & Ney, H. (2011). Confidence- and margin-based MMI/MPE discriminative training for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR), 14(3), 273-288. doi:10.1007/s10032-011-0160-xEspaña-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F. (2011). Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 767-779. doi:10.1109/tpami.2010.141A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, in: 23rd International Conference on Machine Learning (ICML), ACM, 2006, pp. 369–376.A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, in: 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.137A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: International Joint Conference on Neural Networks (IJCNN), Vol. 4, 2005, pp. 2047–2052.A. Graves and J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 545–552.F. Grézl, M. Karafiát, S. Kontár and J. Černocký, Probabilistic and bottle-neck features for LVCSR of meetings, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, 2007.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Jaeger, S., Manke, S., Reichert, J., & Waibel, A. (2001). Online handwriting recognition: the NPen++ recognizer. International Journal on Document Analysis and Recognition, 3(3), 169-180. doi:10.1007/pl00013559M. Kozielski, P. Doetsch and H. Ney, Improvements in RWTH’s system for off-line handwriting recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2013, pp. 935–939.A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems (NIPS), F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, eds, Vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791M. Liwicki, A. Graves, H. Bunke and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks, in: 9th International Conference on Document Analysis and Recognition (ICDAR), 2007, pp. 367–371.Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071S. Marukatat, T. Artieres, R. Gallinari and B. Dorizzi, Sentence recognition through hybrid neuro-Markovian modeling, in: 6th International Conference on Document Analysis and Recognition (ICDAR), 2001, pp. 731–735.F.J. Och, Minimum error rate training in statistical machine translation, in: 41st Annual Meeting on Association for Computational Linguistics, ACL’03, Vol. 1, 2003, pp. 160–167.J. Pastor-Pellicer, S. España-Boquera, M.J. Castro-Bleda and F. Zamora-Martínez, A combined convolutional neural network and dynamic programming approach for text line normalization, in: 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martínez, M. Zeshan Afzal and M.J. Castro-Bleda, Insights on the use of convolutional neural networks for document image binarization, in: The International Work-Conference on Artificial Neural Networks, Vol. 9095, 2015, pp. 115–126.V. Pham, T. Bluche, C. Kermorvant and J. Louradour, Dropout improves recurrent neural networks for handwriting recognition, in: International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 285–290.Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey. International Journal on Document Analysis and Recognition (IJDAR), 12(4), 269-298. doi:10.1007/s10032-009-0098-4A. Poznanski and L. Wolf, CNN-N-gram for HandwritingWord recognition, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2305–2314.Puigcerver, J. (2017). Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.20L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989.Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-yT.N. Sainath, B. Kingsbury and B. Ramabhadran, Auto-encoder bottleneck features using deep belief networks, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 4153–4156.Sayre, K. M. (1973). Machine recognition of handwritten words: A project report. Pattern Recognition, 5(3), 213-228. doi:10.1016/0031-3203(73)90044-7Schenkel, M., Guyon, I., & Henderson, D. (1995). On-line cursive script recognition using time-delay neural networks and hidden Markov models. Machine Vision and Applications, 8(4), 215-223. doi:10.1007/bf01219589Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093A.W. Senior and A.J. Robinson, An off-line cursive handwriting recognition system, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 1998, pp. 309–321.E. Singer and R.P. Lippman, A speech recognizer using radial basis function neural networks in an HMM framework, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, IEEE, 1992, pp. 629–632.J. Stadermann, A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition, in: International Conference on Spoken Language Processing (ICSLP), 2004.A. Stolcke, SRILM: An extensible language modeling toolkit, in: International Conference on Spoken Language Processing (ICSLP), 2002, pp. 901–904.C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–12.TOSELLI, A. H., JUAN, A., GONZÁLEZ, J., SALVADOR, I., VIDAL, E., CASACUBERTA, F., … NEY, H. (2004). INTEGRATED HANDWRITING RECOGNITION AND INTERPRETATION USING FINITE-STATE MODELS. International Journal of Pattern Recognition and Artificial Intelligence, 18(04), 519-539. doi:10.1142/s0218001404003344Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019J.M. Vilar, Efficient computation of confidence intervals for word error rates, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 5101–5104.Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). doi:10.1109/icfhr.2016.0052E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang, Intel math kernel library, in: High-Performance Computing on the Intel® Xeon Phi™, Springer, 2014, pp. 167–188.F. Zamora-Martínez et al., April-ANN Toolkit, a Pattern Recognizer in Lua, Artificial Neural Networks Module, 2013, https://github.com/pakozm/ [github.com]april-ann.Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J., Fischer, A., & Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition, 47(4), 1642-1652. doi:10.1016/j.patcog.2013.10.020Zeyer, A., Beck, E., Schlüter, R., & Ney, H. (2017). CTC in the Context of Generalized Full-Sum HMM Training. Interspeech 2017. doi:10.21437/interspeech.2017-107
    corecore