964 research outputs found

    Learning Kernel Perceptrons on Noisy Data and Random Projections

    No full text
    In this paper, we address the issue of learning nonlinearly separable concepts with a kernel classifier in the situation where the data at hand are altered by a uniform classification noise. Our proposed approach relies on the combination of the technique of random or deterministic projections with a classification noise tolerant perceptron learning algorithm that assumes distributions defined over finite-dimensional spaces. Provided a sufficient separation margin characterizes the problem, this strategy makes it possible to envision the learning from a noisy distribution in any separable Hilbert space, regardless of its dimension; learning with any appropriate Mercer kernel is therefore possible. We prove that the required sample complexity and running time of our algorithm is polynomial in the classical PAC learning parameters. Numerical simulations on toy datasets and on data from the UCI repository support the validity of our approach

    Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs

    Get PDF
    Many real world data are sampled functions. As shown by Functional Data Analysis (FDA) methods, spectra, time series, images, gesture recognition data, etc. can be processed more efficiently if their functional nature is taken into account during the data analysis process. This is done by extending standard data analysis methods so that they can apply to functional inputs. A general way to achieve this goal is to compute projections of the functional data onto a finite dimensional sub-space of the functional space. The coordinates of the data on a basis of this sub-space provide standard vector representations of the functions. The obtained vectors can be processed by any standard method. In our previous work, this general approach has been used to define projection based Multilayer Perceptrons (MLPs) with functional inputs. We study in this paper important theoretical properties of the proposed model. We show in particular that MLPs with functional inputs are universal approximators: they can approximate to arbitrary accuracy any continuous mapping from a compact sub-space of a functional space to R. Moreover, we provide a consistency result that shows that any mapping from a functional space to R can be learned thanks to examples by a projection based MLP: the generalization mean square error of the MLP decreases to the smallest possible mean square error on the data when the number of examples goes to infinity

    Probabilistic Line Searches for Stochastic Optimization

    Full text link
    In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent.Comment: Extended version of the NIPS '15 conference paper, includes detailed pseudo-code, 59 pages, 35 figure

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    Short Term Electricity Forecasting Using Individual Smart Meter Data

    Get PDF
    AbstractSmart metering is a quite new topic that has grown in importance all over the world and it appears to be a remedy for rising prices of electricity. Forecasting electricity usage is an important task to provide intelligence to the smart gird. Accurate forecasting will enable a utility provider to plan the resources and also to take control actions to balance the electricity supply and demand. The customers will benefit from metering solutions through greater understanding of their own energy consumption and future projections, allowing them to better manage costs of their usage. In this proof of concept paper, our contribution is the proposal for accurate short term electricity load forecasting for 24hours ahead, not on the aggregate but on the individual household level
    • …
    corecore