6,669 research outputs found

    Lessons learned in multilingual grounded language learning

    Full text link
    Recent work has shown how to learn better visual-semantic embeddings by leveraging image descriptions in more than one language. Here, we investigate in detail which conditions affect the performance of this type of grounded language learning model. We show that multilingual training improves over bilingual training, and that low-resource languages benefit from training with higher-resource languages. We demonstrate that a multilingual model can be trained equally well on either translations or comparable sentence pairs, and that annotating the same set of images in multiple language enables further improvements via an additional caption-caption ranking objective.Comment: CoNLL 201

    An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

    Get PDF
    End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with large amounts of parallel data. Besides this palpable improvement, neural networks provide several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words -or sentences- which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the NMT context vectors, i.e. output of the encoder, and their power as an interlingua representation of a sentence. We assess their quality and effectiveness by measuring similarities across translations, as well as semantically related and semantically unrelated sentence pairs. Second, as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an F1=98.2% on data from a shared task when using only NMT context vectors. Using context vectors jointly with similarity measures F1 reaches 98.9%.Comment: 11 pages, 4 figure

    Multilingual Models for Compositional Distributed Semantics

    Full text link
    We present a novel technique for learning semantic representations, which extends the distributional hypothesis to multilingual data and joint-space embeddings. Our models leverage parallel data and learn to strongly align the embeddings of semantically equivalent sentences, while maintaining sufficient distance between those of dissimilar sentences. The models do not rely on word alignments or any syntactic information and are successfully applied to a number of diverse languages. We extend our approach to learn semantic representations at the document level, too. We evaluate these models on two cross-lingual document classification tasks, outperforming the prior state of the art. Through qualitative analysis and the study of pivoting effects we demonstrate that our representations are semantically plausible and can capture semantic relationships across languages without parallel data.Comment: Proceedings of ACL 2014 (Long papers
    corecore