18,302 research outputs found

    Faster Reinforcement Learning Using Active Simulators

    Full text link
    In this work, we propose several online methods to build a \emph{learning curriculum} from a given set of target-task-specific training tasks in order to speed up reinforcement learning (RL). These methods can decrease the total training time needed by an RL agent compared to training on the target task from scratch. Unlike traditional transfer learning, we consider creating a sequence from several training tasks in order to provide the most benefit in terms of reducing the total time to train. Our methods utilize the learning trajectory of the agent on the curriculum tasks seen so far to decide which tasks to train on next. An attractive feature of our methods is that they are weakly coupled to the choice of the RL algorithm as well as the transfer learning method. Further, when there is domain information available, our methods can incorporate such knowledge to further speed up the learning. We experimentally show that these methods can be used to obtain suitable learning curricula that speed up the overall training time on two different domains.Comment: 12 pages and 4 figures More experiments added to the previous versio

    Using Task Descriptions in Lifelong Machine Learning for Improved Performance and Zero-Shot Transfer

    Full text link
    Knowledge transfer between tasks can improve the performance of learned models, but requires an accurate estimate of the inter-task relationships to identify the relevant knowledge to transfer. These inter-task relationships are typically estimated based on training data for each task, which is inefficient in lifelong learning settings where the goal is to learn each consecutive task rapidly from as little data as possible. To reduce this burden, we develop a lifelong learning method based on coupled dictionary learning that utilizes high-level task descriptions to model the inter-task relationships. We show that using task descriptors improves the performance of the learned task policies, providing both theoretical justification for the benefit and empirical demonstration of the improvement across a variety of learning problems. Given only the descriptor for a new task, the lifelong learner is also able to accurately predict a model for the new task through zero-shot learning using the coupled dictionary, eliminating the need to gather training data before addressing the task.Comment: 28 page

    Moving Target Defense for Deep Visual Sensing against Adversarial Examples

    Full text link
    Deep learning based visual sensing has achieved attractive accuracy but is shown vulnerable to adversarial example attacks. Specifically, once the attackers obtain the deep model, they can construct adversarial examples to mislead the model to yield wrong classification results. Deployable adversarial examples such as small stickers pasted on the road signs and lanes have been shown effective in misleading advanced driver-assistance systems. Many existing countermeasures against adversarial examples build their security on the attackers' ignorance of the defense mechanisms. Thus, they fall short of following Kerckhoffs's principle and can be subverted once the attackers know the details of the defense. This paper applies the strategy of moving target defense (MTD) to generate multiple new deep models after system deployment, that will collaboratively detect and thwart adversarial examples. Our MTD design is based on the adversarial examples' minor transferability to models differing from the one (e.g., the factory-designed model) used for attack construction. The post-deployment quasi-secret deep models significantly increase the bar for the attackers to construct effective adversarial examples. We also apply the technique of serial data fusion with early stopping to reduce the inference time by a factor of up to 5 while maintaining the sensing and defense performance. Extensive evaluation based on three datasets including a road sign image database and a GPU-equipped Jetson embedded computing board shows the effectiveness of our approach

    Monocular Depth Estimators: Vulnerabilities and Attacks

    Full text link
    Recent advancements of neural networks lead to reliable monocular depth estimation. Monocular depth estimated techniques have the upper hand over traditional depth estimation techniques as it only needs one image during inference. Depth estimation is one of the essential tasks in robotics, and monocular depth estimation has a wide variety of safety-critical applications like in self-driving cars and surgical devices. Thus, the robustness of such techniques is very crucial. It has been shown in recent works that these deep neural networks are highly vulnerable to adversarial samples for tasks like classification, detection and segmentation. These adversarial samples can completely ruin the output of the system, making their credibility in real-time deployment questionable. In this paper, we investigate the robustness of the most state-of-the-art monocular depth estimation networks against adversarial attacks. Our experiments show that tiny perturbations on an image that are invisible to the naked eye (perturbation attack) and corruption less than about 1% of an image (patch attack) can affect the depth estimation drastically. We introduce a novel deep feature annihilation loss that corrupts the hidden feature space representation forcing the decoder of the network to output poor depth maps. The white-box and black-box test compliments the effectiveness of the proposed attack. We also perform adversarial example transferability tests, mainly cross-data transferability

    An Optimal Online Method of Selecting Source Policies for Reinforcement Learning

    Full text link
    Transfer learning significantly accelerates the reinforcement learning process by exploiting relevant knowledge from previous experiences. The problem of optimally selecting source policies during the learning process is of great importance yet challenging. There has been little theoretical analysis of this problem. In this paper, we develop an optimal online method to select source policies for reinforcement learning. This method formulates online source policy selection as a multi-armed bandit problem and augments Q-learning with policy reuse. We provide theoretical guarantees of the optimal selection process and convergence to the optimal policy. In addition, we conduct experiments on a grid-based robot navigation domain to demonstrate its efficiency and robustness by comparing to the state-of-the-art transfer learning method

    Gotta Catch 'Em All: Using Honeypots to Catch Adversarial Attacks on Neural Networks

    Full text link
    Deep neural networks (DNN) are known to be vulnerable to adversarial attacks. Numerous efforts either try to patch weaknesses in trained models, or try to make it difficult or costly to compute adversarial examples that exploit them. In our work, we explore a new "honeypot" approach to protect DNN models. We intentionally inject trapdoors, honeypot weaknesses in the classification manifold that attract attackers searching for adversarial examples. Attackers' optimization algorithms gravitate towards trapdoors, leading them to produce attacks similar to trapdoors in the feature space. Our defense then identifies attacks by comparing neuron activation signatures of inputs to those of trapdoors. In this paper, we introduce trapdoors and describe an implementation of a trapdoor-enabled defense. First, we analytically prove that trapdoors shape the computation of adversarial attacks so that attack inputs will have feature representations very similar to those of trapdoors. Second, we experimentally show that trapdoor-protected models can detect, with high accuracy, adversarial examples generated by state-of-the-art attacks (PGD, optimization-based CW, Elastic Net, BPDA), with negligible impact on normal classification. These results generalize across classification domains, including image, facial, and traffic-sign recognition. We also present significant results measuring trapdoors' robustness against customized adaptive attacks (countermeasures)

    Learning Curriculum Policies for Reinforcement Learning

    Full text link
    Curriculum learning in reinforcement learning is a training methodology that seeks to speed up learning of a difficult target task, by first training on a series of simpler tasks and transferring the knowledge acquired to the target task. Automatically choosing a sequence of such tasks (i.e. a curriculum) is an open problem that has been the subject of much recent work in this area. In this paper, we build upon a recent method for curriculum design, which formulates the curriculum sequencing problem as a Markov Decision Process. We extend this model to handle multiple transfer learning algorithms, and show for the first time that a curriculum policy over this MDP can be learned from experience. We explore various representations that make this possible, and evaluate our approach by learning curriculum policies for multiple agents in two different domains. The results show that our method produces curricula that can train agents to perform on a target task as fast or faster than existing methods

    Adversarial Examples - A Complete Characterisation of the Phenomenon

    Full text link
    We provide a complete characterisation of the phenomenon of adversarial examples - inputs intentionally crafted to fool machine learning models. We aim to cover all the important concerns in this field of study: (1) the conjectures on the existence of adversarial examples, (2) the security, safety and robustness implications, (3) the methods used to generate and (4) protect against adversarial examples and (5) the ability of adversarial examples to transfer between different machine learning models. We provide ample background information in an effort to make this document self-contained. Therefore, this document can be used as survey, tutorial or as a catalog of attacks and defences using adversarial examples

    Towards a Robust Deep Neural Network in Texts: A Survey

    Full text link
    Deep neural networks (DNNs) have achieved remarkable success in various tasks (e.g., image classification, speech recognition, and natural language processing). However, researches have shown that DNN models are vulnerable to adversarial examples, which cause incorrect predictions by adding imperceptible perturbations into normal inputs. Studies on adversarial examples in image domain have been well investigated, but in texts the research is not enough, let alone a comprehensive survey in this field. In this paper, we aim at presenting a comprehensive understanding of adversarial attacks and corresponding mitigation strategies in texts. Specifically, we first give a taxonomy of adversarial attacks and defenses in texts from the perspective of different natural language processing (NLP) tasks, and then introduce how to build a robust DNN model via testing and verification. Finally, we discuss the existing challenges of adversarial attacks and defenses in texts and present the future research directions in this emerging field

    Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models

    Full text link
    In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification
    • …
    corecore