418 research outputs found

    Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions

    Get PDF
    Learning a causal effect from observational data requires strong assumptions. One possible method is to use instrumental variables, which are typically justified by background knowledge. It is possible, under further assumptions, to discover whether a variable is structurally instrumental to a target causal effect X→YX→Y. However, the few existing approaches are lacking on how general these assumptions can be, and how to express possible equivalence classes of solutions. We present instrumental variable discovery methods that systematically characterize which set of causal effects can and cannot be discovered under local graphical criteria that define instrumental variables, without reconstructing full causal graphs. We also introduce the first methods to exploit non-Gaussianity assumptions, highlighting identifiability problems and solutions. Due to the difficulty of estimating such models from finite data, we investigate how to strengthen assumptions in order to make the statistical problem more manageable

    Identification and Estimation of Causal Effects Using non-Gaussianity and Auxiliary Covariates

    Full text link
    Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the n\sqrt{n}-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.Comment: 16 papges, 7 Figure

    Invariant Causal Prediction for Nonlinear Models

    Full text link
    An important problem in many domains is to predict how a system will respond to interventions. This task is inherently linked to estimating the system's underlying causal structure. To this end, Invariant Causal Prediction (ICP) (Peters et al., 2016) has been proposed which learns a causal model exploiting the invariance of causal relations using data from different environments. When considering linear models, the implementation of ICP is relatively straightforward. However, the nonlinear case is more challenging due to the difficulty of performing nonparametric tests for conditional independence. In this work, we present and evaluate an array of methods for nonlinear and nonparametric versions of ICP for learning the causal parents of given target variables. We find that an approach which first fits a nonlinear model with data pooled over all environments and then tests for differences between the residual distributions across environments is quite robust across a large variety of simulation settings. We call this procedure "invariant residual distribution test". In general, we observe that the performance of all approaches is critically dependent on the true (unknown) causal structure and it becomes challenging to achieve high power if the parental set includes more than two variables. As a real-world example, we consider fertility rate modelling which is central to world population projections. We explore predicting the effect of hypothetical interventions using the accepted models from nonlinear ICP. The results reaffirm the previously observed central causal role of child mortality rates

    Perturbations and Causality in Gaussian Latent Variable Models

    Full text link
    Causal inference is a challenging problem with observational data alone. The task becomes easier when having access to data from perturbing the underlying system, even when happening in a non-randomized way: this is the setting we consider, encompassing also latent confounding variables. To identify causal relations among a collections of covariates and a response variable, existing procedures rely on at least one of the following assumptions: i) the response variable remains unperturbed, ii) the latent variables remain unperturbed, and iii) the latent effects are dense. In this paper, we examine a perturbation model for interventional data, which can be viewed as a mixed-effects linear structural causal model, over a collection of Gaussian variables that does not satisfy any of these conditions. We propose a maximum-likelihood estimator -- dubbed DirectLikelihood -- that exploits system-wide invariances to uniquely identify the population causal structure from unspecific perturbation data, and our results carry over to linear structural causal models without requiring Gaussianity. We illustrate the utility of our framework on synthetic data as well as real data involving California reservoirs and protein expressions
    • …
    corecore