24,006 research outputs found

    Learning Implicit Generative Models with the Method of Learned Moments

    Full text link
    We propose a method of moments (MoM) algorithm for training large-scale implicit generative models. Moment estimation in this setting encounters two problems: it is often difficult to define the millions of moments needed to learn the model parameters, and it is hard to determine which properties are useful when specifying moments. To address the first issue, we introduce a moment network, and define the moments as the network's hidden units and the gradient of the network's output with the respect to its parameters. To tackle the second problem, we use asymptotic theory to highlight desiderata for moments -- namely they should minimize the asymptotic variance of estimated model parameters -- and introduce an objective to learn better moments. The sequence of objectives created by this Method of Learned Moments (MoLM) can train high-quality neural image samplers. On CIFAR-10, we demonstrate that MoLM-trained generators achieve significantly higher Inception Scores and lower Frechet Inception Distances than those trained with gradient penalty-regularized and spectrally-normalized adversarial objectives. These generators also achieve nearly perfect Multi-Scale Structural Similarity Scores on CelebA, and can create high-quality samples of 128x128 images.Comment: ICML 2018, 6 figures, 17 page

    Learning Implicit Generative Models by Matching Perceptual Features

    Full text link
    Perceptual features (PFs) have been used with great success in tasks such as transfer learning, style transfer, and super-resolution. However, the efficacy of PFs as key source of information for learning generative models is not well studied. We investigate here the use of PFs in the context of learning implicit generative models through moment matching (MM). More specifically, we propose a new effective MM approach that learns implicit generative models by performing mean and covariance matching of features extracted from pretrained ConvNets. Our proposed approach improves upon existing MM methods by: (1) breaking away from the problematic min/max game of adversarial learning; (2) avoiding online learning of kernel functions; and (3) being efficient with respect to both number of used moments and required minibatch size. Our experimental results demonstrate that, due to the expressiveness of PFs from pretrained deep ConvNets, our method achieves state-of-the-art results for challenging benchmarks.Comment: 16 page

    Learning Implicit Generative Models Using Differentiable Graph Tests

    Full text link
    Recently, there has been a growing interest in the problem of learning rich implicit models - those from which we can sample, but can not evaluate their density. These models apply some parametric function, such as a deep network, to a base measure, and are learned end-to-end using stochastic optimization. One strategy of devising a loss function is through the statistics of two sample tests - if we can fool a statistical test, the learned distribution should be a good model of the true data. However, not all tests can easily fit into this framework, as they might not be differentiable with respect to the data points, and hence with respect to the parameters of the implicit model. Motivated by this problem, in this paper we show how two such classical tests, the Friedman-Rafsky and k-nearest neighbour tests, can be effectively smoothed using ideas from undirected graphical models - the matrix tree theorem and cardinality potentials. Moreover, as we show experimentally, smoothing can significantly increase the power of the test, which might of of independent interest. Finally, we apply our method to learn implicit models

    Approximate Inference with Amortised MCMC

    Full text link
    We propose a novel approximate inference algorithm that approximates a target distribution by amortising the dynamics of a user-selected MCMC sampler. The idea is to initialise MCMC using samples from an approximation network, apply the MCMC operator to improve these samples, and finally use the samples to update the approximation network thereby improving its quality. This provides a new generic framework for approximate inference, allowing us to deploy highly complex, or implicitly defined approximation families with intractable densities, including approximations produced by warping a source of randomness through a deep neural network. Experiments consider image modelling with deep generative models as a challenging test for the method. Deep models trained using amortised MCMC are shown to generate realistic looking samples as well as producing diverse imputations for images with regions of missing pixels

    Asymmetric Variational Autoencoders

    Full text link
    Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables. In this paper, we propose a novel framework to enrich the variational family by incorporating auxiliary variables to the variational family. The resulting inference network doesn't require density evaluations for the auxiliary variables and thus complex implicit densities over the auxiliary variables can be constructed by neural networks. It can be shown that the actual variational posterior of the proposed approach is essentially modeling a rich probabilistic mixture of simple variational posterior indexed by auxiliary variables, thus a flexible inference model can be built. Empirical evaluations on several density estimation tasks demonstrates the effectiveness of the proposed method.Comment: ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Model

    Parametric Adversarial Divergences are Good Task Losses for Generative Modeling

    Full text link
    Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this position paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for generative modeling tasks, such as for generating "visually realistic" images. We refer to those task losses as parametric adversarial divergences and we give two main reasons why we think parametric divergences are good learning objectives for generative modeling. Additionally, we unify the processes of choosing a good structured loss (in structured prediction) and choosing a discriminator architecture (in generative modeling) using statistical decision theory; we are then able to formalize and quantify the intuition that "weaker" losses are easier to learn from, in a specific setting. Finally, we propose two new challenging tasks to evaluate parametric and nonparametric divergences: a qualitative task of generating very high-resolution digits, and a quantitative task of learning data that satisfies high-level algebraic constraints. We use two common divergences to train a generator and show that the parametric divergence outperforms the nonparametric divergence on both the qualitative and the quantitative task.Comment: 22 page

    Generative Adversarial Networks (GANs): What it can generate and What it cannot?

    Full text link
    In recent years, Generative Adversarial Networks (GANs) have received significant attention from the research community. With a straightforward implementation and outstanding results, GANs have been used for numerous applications. Despite the success, GANs lack a proper theoretical explanation. These models suffer from issues like mode collapse, non-convergence, and instability during training. To address these issues, researchers have proposed theoretically rigorous frameworks inspired by varied fields of Game theory, Statistical theory, Dynamical systems, etc. In this paper, we propose to give an appropriate structure to study these contributions systematically. We essentially categorize the papers based on the issues they raise and the kind of novelty they introduce to address them. Besides, we provide insight into how each of the discussed articles solves the concerned problems. We compare and contrast different results and put forth a summary of theoretical contributions about GANs with focus on image/visual applications. We expect this summary paper to give a bird's eye view to a person wishing to understand the theoretical progress in GANs so far

    Variational Inference of Disentangled Latent Concepts from Unlabeled Observations

    Full text link
    Disentangled representations, where the higher level data generative factors are reflected in disjoint latent dimensions, offer several benefits such as ease of deriving invariant representations, transferability to other tasks, interpretability, etc. We consider the problem of unsupervised learning of disentangled representations from large pool of unlabeled observations, and propose a variational inference based approach to infer disentangled latent factors. We introduce a regularizer on the expectation of the approximate posterior over observed data that encourages the disentanglement. We also propose a new disentanglement metric which is better aligned with the qualitative disentanglement observed in the decoder's output. We empirically observe significant improvement over existing methods in terms of both disentanglement and data likelihood (reconstruction quality).Comment: ICLR 2018 Versio

    Visually-Aware Fashion Recommendation and Design with Generative Image Models

    Full text link
    Building effective recommender systems for domains like fashion is challenging due to the high level of subjectivity and the semantic complexity of the features involved (i.e., fashion styles). Recent work has shown that approaches to `visual' recommendation (e.g.~clothing, art, etc.) can be made more accurate by incorporating visual signals directly into the recommendation objective, using `off-the-shelf' feature representations derived from deep networks. Here, we seek to extend this contribution by showing that recommendation performance can be significantly improved by learning `fashion aware' image representations directly, i.e., by training the image representation (from the pixel level) and the recommender system jointly; this contribution is related to recent work using Siamese CNNs, though we are able to show improvements over state-of-the-art recommendation techniques such as BPR and variants that make use of pre-trained visual features. Furthermore, we show that our model can be used \emph{generatively}, i.e., given a user and a product category, we can generate new images (i.e., clothing items) that are most consistent with their personal taste. This represents a first step towards building systems that go beyond recommending existing items from a product corpus, but which can be used to suggest styles and aid the design of new products.Comment: 10 pages, 6 figures. Accepted by ICDM'17 as a long pape

    Recent Advances in Autoencoder-Based Representation Learning

    Full text link
    Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these results we make use of meta-priors believed useful for downstream tasks, such as disentanglement and hierarchical organization of features. In particular, we uncover three main mechanisms to enforce such properties, namely (i) regularizing the (approximate or aggregate) posterior distribution, (ii) factorizing the encoding and decoding distribution, or (iii) introducing a structured prior distribution. While there are some promising results, implicit or explicit supervision remains a key enabler and all current methods use strong inductive biases and modeling assumptions. Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.Comment: Presented at the third workshop on Bayesian Deep Learning (NeurIPS 2018
    • …
    corecore