2,858 research outputs found

    Statistical Models for Co-occurrence Data

    Get PDF
    Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms

    A history and theory of textual event detection and recognition

    Get PDF

    Geometric Learning of Hidden Markov Models via a Method of Moments Algorithm

    Full text link
    We present a novel algorithm for learning the parameters of hidden Markov models (HMMs) in a geometric setting where the observations take values in Riemannian manifolds. In particular, we elevate a recent second-order method of moments algorithm that incorporates non-consecutive correlations to a more general setting where observations take place in a Riemannian symmetric space of non-positive curvature and the observation likelihoods are Riemannian Gaussians. The resulting algorithm decouples into a Riemannian Gaussian mixture model estimation algorithm followed by a sequence of convex optimization procedures. We demonstrate through examples that the learner can result in significantly improved speed and numerical accuracy compared to existing learners

    Understanding Vehicular Traffic Behavior from Video: A Survey of Unsupervised Approaches

    Full text link
    Recent emerging trends for automatic behavior analysis and understanding from infrastructure video are reviewed. Research has shifted from high-resolution estimation of vehicle state and instead, pushed machine learning approaches to extract meaningful patterns in aggregates in an unsupervised fashion. These patterns represent priors on observable motion, which can be utilized to describe a scene, answer behavior questions such as where is a vehicle going, how many vehicles are performing the same action, and to detect an abnormal event. The review focuses on two main methods for scene description, trajectory clustering and topic modeling. Example applications that utilize the behavioral modeling techniques are also presented. In addition, the most popular public datasets for behavioral analysis are presented. Discussion and comment on future directions in the field are also provide
    corecore