264 research outputs found

    An evolutionary behavioral model for decision making

    Get PDF
    For autonomous agents the problem of deciding what to do next becomes increasingly complex when acting in unpredictable and dynamic environments pursuing multiple and possibly conflicting goals. One of the most relevant behavior-based model that tries to deal with this problem is the one proposed by Maes, the Bbehavior Network model. This model proposes a set of behaviors as purposive perception-action units which are linked in a nonhierarchical network, and whose behavior selection process is orchestrated by spreading activation dynamics. In spite of being an adaptive model (in the sense of self-regulating its own behavior selection process), and despite the fact that several extensions have been proposed in order to improve the original model adaptability, there is not a robust model yet that can self-modify adaptively both the topological structure and the functional purpose\ud of the network as a result of the interaction between the agent and its environment. Thus, this work proffers an innovative hybrid model driven by gene expression programming, which makes two main contributions: (1) given an initial set of meaningless and unconnected units, the evolutionary mechanism is able to build well-defined and robust behavior networks which are adapted and specialized to concrete internal agent's needs and goals; and (2)\ud the same evolutionary mechanism is able to assemble quite\ud complex structures such as deliberative plans (which operate in the long-term) and problem-solving strategies

    HTN planning: Overview, comparison, and beyond

    Get PDF
    Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.<br/

    Learning STRIPS Action Models with Classical Planning

    Full text link
    This paper presents a novel approach for learning STRIPS action models from examples that compiles this inductive learning task into a classical planning task. Interestingly, the compilation approach is flexible to different amounts of available input knowledge; the learning examples can range from a set of plans (with their corresponding initial and final states) to just a pair of initial and final states (no intermediate action or state is given). Moreover, the compilation accepts partially specified action models and it can be used to validate whether the observation of a plan execution follows a given STRIPS action model, even if this model is not fully specified.Comment: 8+1 pages, 4 figures, 6 table

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making

    Full text link
    The field of Sequential Decision Making (SDM) provides tools for solving Sequential Decision Processes (SDPs), where an agent must make a series of decisions in order to complete a task or achieve a goal. Historically, two competing SDM paradigms have view for supremacy. Automated Planning (AP) proposes to solve SDPs by performing a reasoning process over a model of the world, often represented symbolically. Conversely, Reinforcement Learning (RL) proposes to learn the solution of the SDP from data, without a world model, and represent the learned knowledge subsymbolically. In the spirit of reconciliation, we provide a review of symbolic, subsymbolic and hybrid methods for SDM. We cover both methods for solving SDPs (e.g., AP, RL and techniques that learn to plan) and for learning aspects of their structure (e.g., world models, state invariants and landmarks). To the best of our knowledge, no other review in the field provides the same scope. As an additional contribution, we discuss what properties an ideal method for SDM should exhibit and argue that neurosymbolic AI is the current approach which most closely resembles this ideal method. Finally, we outline several proposals to advance the field of SDM via the integration of symbolic and subsymbolic AI

    Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics

    Full text link
    We propose a hybrid combination of active inference and behavior trees (BTs) for reactive action planning and execution in dynamic environments, showing how robotic tasks can be formulated as a free-energy minimization problem. The proposed approach allows to handle partially observable initial states and improves the robustness of classical BTs against unexpected contingencies while at the same time reducing the number of nodes in a tree. In this work, the general nominal behavior is specified offline through BTs, where a new type of leaf node, the prior node, is introduced to specify the desired state to be achieved rather than an action to be executed as typically done in BTs. The decision of which action to execute to reach the desired state is performed online through active inference. This results in the combination of continual online planning and hierarchical deliberation, that is an agent is able to follow a predefined offline plan while still being able to locally adapt and take autonomous decisions at runtime. The properties of our algorithm, such as convergence and robustness, are thoroughly analyzed, and the theoretical results are validated in two different mobile manipulators performing similar tasks, both in a simulated and real retail environment

    Self Monitoring Goal Driven Autonomy Agents

    Get PDF
    The growing abundance of autonomous systems is driving the need for robust performance. Most current systems are not fully autonomous and often fail when placed in real environments. Via self-monitoring, agents can identify when their own, or externally given, boundaries are violated, thereby increasing their performance and reliability. Specifically, self-monitoring is the identification of unexpected situations that either (1) prohibit the agent from reaching its goal(s) or (2) result in the agent acting outside of its boundaries. Increasingly complex and open environments warrant the use of such robust autonomy (e.g., self-driving cars, delivery drones, and all types of future digital and physical assistants). The techniques presented herein advance the current state of the art in self-monitoring, demonstrating improved performance in a variety of challenging domains. In the aforementioned domains, there is an inability to plan for all possible situations. In many cases all aspects of a domain are not known beforehand, and, even if they were, the cost of encoding them is high. Self-monitoring agents are able to identify and then respond to previously unexpected situations, or never-before-encountered situations. When dealing with unknown situations, one must start with what is expected behavior and use that to derive unexpected behavior. The representation of expectations will vary among domains; in a real-time strategy game like Starcraft, it could be logically inferred concepts; in a mars rover domain, it could be an accumulation of actions\u27 effects. Nonetheless, explicit expectations are necessary to identify the unexpected. This thesis lays the foundation for self-monitoring in goal driven autonomy agents in both rich and expressive domains and in partially observable domains. We introduce multiple techniques for handling such environments. We show how inferred expectations are needed to enable high level planning in real-time strategy games. We show how a hierarchical structure of Goal-driven Autonomy (GDA) enables agents to operate within large state spaces. Within Hierarchical Task Network planning, we show how informed expectations identify states that are likely to prevent an agent from reaching its goals in dynamic domains. Finally, we give a model of expectations for self-monitoring at the meta-cognitive level, and empirical results of agents equipped with and without metacognitive expectations
    • ā€¦
    corecore