26,357 research outputs found

    Global Optimization for Value Function Approximation

    Full text link
    Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms of the Bellman residual. Solving a bilinear program optimally is NP-hard, but this is unavoidable because the Bellman-residual minimization itself is NP-hard. We describe and analyze both optimal and approximate algorithms for solving bilinear programs. The analysis shows that this algorithm offers a convergent generalization of approximate policy iteration. We also briefly analyze the behavior of bilinear programming algorithms under incomplete samples. Finally, we demonstrate that the proposed approach can consistently minimize the Bellman residual on simple benchmark problems

    A Hierarchical Reinforcement Learning Method for Persistent Time-Sensitive Tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training case

    Distral: Robust Multitask Reinforcement Learning

    Full text link
    Most deep reinforcement learning algorithms are data inefficient in complex and rich environments, limiting their applicability to many scenarios. One direction for improving data efficiency is multitask learning with shared neural network parameters, where efficiency may be improved through transfer across related tasks. In practice, however, this is not usually observed, because gradients from different tasks can interfere negatively, making learning unstable and sometimes even less data efficient. Another issue is the different reward schemes between tasks, which can easily lead to one task dominating the learning of a shared model. We propose a new approach for joint training of multiple tasks, which we refer to as Distral (Distill & transfer learning). Instead of sharing parameters between the different workers, we propose to share a "distilled" policy that captures common behaviour across tasks. Each worker is trained to solve its own task while constrained to stay close to the shared policy, while the shared policy is trained by distillation to be the centroid of all task policies. Both aspects of the learning process are derived by optimizing a joint objective function. We show that our approach supports efficient transfer on complex 3D environments, outperforming several related methods. Moreover, the proposed learning process is more robust and more stable---attributes that are critical in deep reinforcement learning

    Learning Classical Planning Strategies with Policy Gradient

    Get PDF
    A common paradigm in classical planning is heuristic forward search. Forward search planners often rely on simple best-first search which remains fixed throughout the search process. In this paper, we introduce a novel search framework capable of alternating between several forward search approaches while solving a particular planning problem. Selection of the approach is performed using a trainable stochastic policy, mapping the state of the search to a probability distribution over the approaches. This enables using policy gradient to learn search strategies tailored to a specific distributions of planning problems and a selected performance metric, e.g. the IPC score. We instantiate the framework by constructing a policy space consisting of five search approaches and a two-dimensional representation of the planner's state. Then, we train the system on randomly generated problems from five IPC domains using three different performance metrics. Our experimental results show that the learner is able to discover domain-specific search strategies, improving the planner's performance relative to the baselines of plain best-first search and a uniform policy.Comment: Accepted for ICAPS 201

    A hierarchical reinforcement learning method for persistent time-sensitive tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training cases
    • …
    corecore