2,850 research outputs found

    Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

    Full text link
    In order to robustly execute a task under environmental uncertainty, a robot needs to be able to reactively adapt to changes arising in its environment. The environment changes are usually reflected in deviation from expected sensory traces. These deviations in sensory traces can be used to drive the motion adaptation, and for this purpose, a feedback model is required. The feedback model maps the deviations in sensory traces to the motion plan adaptation. In this paper, we develop a general data-driven framework for learning a feedback model from demonstrations. We utilize a variant of a radial basis function network structure --with movement phases as kernel centers-- which can generally be applied to represent any feedback models for movement primitives. To demonstrate the effectiveness of our framework, we test it on the task of scraping on a tilt board. In this task, we are learning a reactive policy in the form of orientation adaptation, based on deviations of tactile sensor traces. As a proof of concept of our method, we provide evaluations on an anthropomorphic robot. A video demonstrating our approach and its results can be seen in https://youtu.be/7Dx5imy1KcwComment: 8 pages, accepted to be published at the International Conference on Robotics and Automation (ICRA) 201

    Deep Reinforcement Learning with Feedback-based Exploration

    Full text link
    Deep Reinforcement Learning has enabled the control of increasingly complex and high-dimensional problems. However, the need of vast amounts of data before reasonable performance is attained prevents its widespread application. We employ binary corrective feedback as a general and intuitive manner to incorporate human intuition and domain knowledge in model-free machine learning. The uncertainty in the policy and the corrective feedback is combined directly in the action space as probabilistic conditional exploration. As a result, the greatest part of the otherwise ignorant learning process can be avoided. We demonstrate the proposed method, Predictive Probabilistic Merging of Policies (PPMP), in combination with DDPG. In experiments on continuous control problems of the OpenAI Gym, we achieve drastic improvements in sample efficiency, final performance, and robustness to erroneous feedback, both for human and synthetic feedback. Additionally, we show solutions beyond the demonstrated knowledge.Comment: 6 page

    A New Data Source for Inverse Dynamics Learning

    Full text link
    Modern robotics is gravitating toward increasingly collaborative human robot interaction. Tools such as acceleration policies can naturally support the realization of reactive, adaptive, and compliant robots. These tools require us to model the system dynamics accurately -- a difficult task. The fundamental problem remains that simulation and reality diverge--we do not know how to accurately change a robot's state. Thus, recent research on improving inverse dynamics models has been focused on making use of machine learning techniques. Traditional learning techniques train on the actual realized accelerations, instead of the policy's desired accelerations, which is an indirect data source. Here we show how an additional training signal -- measured at the desired accelerations -- can be derived from a feedback control signal. This effectively creates a second data source for learning inverse dynamics models. Furthermore, we show how both the traditional and this new data source, can be used to train task-specific models of the inverse dynamics, when used independently or combined. We analyze the use of both data sources in simulation and demonstrate its effectiveness on a real-world robotic platform. We show that our system incrementally improves the learned inverse dynamics model, and when using both data sources combined converges more consistently and faster.Comment: IROS 201
    • …
    corecore