62,071 research outputs found

    Learning Forward Models for Robots

    No full text

    Online Ensemble Learning of Sensorimotor Contingencies

    Get PDF
    Forward models play a key role in cognitive agents by providing predictions of the sensory consequences of motor commands, also known as sensorimotor contingencies (SMCs). In continuously evolving environments, the ability to anticipate is fundamental in distinguishing cognitive from reactive agents, and it is particularly relevant for autonomous robots, that must be able to adapt their models in an online manner. Online learning skills, high accuracy of the forward models and multiple-step-ahead predictions are needed to enhance the robots’ anticipation capabilities. We propose an online heterogeneous ensemble learning method for building accurate forward models of SMCs relating motor commands to effects in robots’ sensorimotor system, in particular considering proprioception and vision. Our method achieves up to 98% higher accuracy both in short and long term predictions, compared to single predictors and other online and offline homogeneous ensembles. This method is validated on two different humanoid robots, namely the iCub and the Baxter

    Action conditional recurrent Kalman networks for forward and inverse dynamics learning

    Get PDF
    Estimating accurate forward and inverse dynamics models is a crucial component of model-based control for sophisticated robots such as robots driven by hydraulics, artificial muscles, or robots dealing with different contact situations. Analytic models to such processes are often unavailable or inaccurate due to complex hysteresis effects, unmodelled friction and stiction phenomena, and unknown effects during contact situations. A promising approach is to obtain spatio-temporal models in a data-driven way using recurrent neural networks, as they can overcome those issues. However, such models often do not meet accuracy demands sufficiently, degenerate in performance for the required high sampling frequencies and cannot provide uncertainty estimates. We adopt a recent probabilistic recurrent neural network architecture, called Recurrent Kalman Networks (RKNs), to model learning by conditioning its transition dynamics on the control actions. RKNs outperform standard recurrent networks such as LSTMs on many state estimation tasks. Inspired by Kalman filters, the RKN provides an elegant way to achieve action conditioning within its recurrent cell by leveraging additive interactions between the current latent state and the action variables. We present two architectures, one for forward model learning and one for inverse model learning. Both architectures significantly outperform existing model learning frameworks as well as analytical models in terms of prediction performance on a variety of real robot dynamics models

    Learning coupled forward-inverse models with combined prediction errors

    Get PDF
    Challenging tasks in unstructured environments require robots to learn complex models. Given a large amount of information, learning multiple simple models can offer an efficient alternative to a monolithic complex network. Training multiple models—that is, learning their parameters and their responsibilities—has been shown to be prohibitively hard as optimization is prone to local minima. To efficiently learn multiple models for different contexts, we thus develop a new algorithm based on expectation maximization (EM). In contrast to comparable concepts, this algorithm trains multiple modules of paired forward-inverse models by using the prediction errors of both forward and inverse models simultaneously. In particular, we show that our method yields a substantial improvement over only considering the errors of the forward models on tasks where the inverse space contains multiple solution

    Perspective Taking Through Simulation

    No full text
    Robots that operate among humans need to be able to attribute mental states in order to facilitate learning through imitation and collaboration. The success of the simulation theory approach for attributing mental states to another person relies on the ability to take the perspective of that person, typically by generating pretend states from that person’s point of view. In this paper, internal inverse and forward models are coupled to create simulation processes that may be used for mental state attribution: simulation of the visual process is used to attribute perceptions, and simulation of the motor control process is used to attribute potential actions. To demonstrate the approach, experiments are performed with a robot attributing perceptions and potential actions to a second robot

    GNM: A General Navigation Model to Drive Any Robot

    Full text link
    Learning provides a powerful tool for vision-based navigation, but the capabilities of learning-based policies are constrained by limited training data. If we could combine data from all available sources, including multiple kinds of robots, we could train more powerful navigation models. In this paper, we study how a general goal-conditioned model for vision-based navigation can be trained on data obtained from many distinct but structurally similar robots, and enable broad generalization across environments and embodiments. We analyze the necessary design decisions for effective data sharing across robots, including the use of temporal context and standardized action spaces, and demonstrate that an omnipolicy trained from heterogeneous datasets outperforms policies trained on any single dataset. We curate 60 hours of navigation trajectories from 6 distinct robots, and deploy the trained GNM on a range of new robots, including an underactuated quadrotor. We find that training on diverse data leads to robustness against degradation in sensing and actuation. Using a pre-trained navigation model with broad generalization capabilities can bootstrap applications on novel robots going forward, and we hope that the GNM represents a step in that direction. For more information on the datasets, code, and videos, please check out http://sites.google.com/view/drive-any-robot

    Developmental learning of internal models for robotics

    No full text
    Abstract: Robots that operate in human environments can learn motor skills asocially, from selfexploration, or socially, from imitating their peers. A robot capable of doing both can be more ~daptiveand autonomous. Learning by imitation, however, requires the ability to understand the actions ofothers in terms ofyour own motor system: this information can come from a robot's own exploration. This thesis investigates the minimal requirements for a robotic system than learns from both self-exploration and imitation of others. .Through self.exploration and computer vision techniques, a robot can develop forward 'models: internal mo'dels of its own motor system that enable it to predict the consequences of its actions. Multiple forward models are learnt that give the robot a distributed, causal representation of its motor system. It is demon~trated how a controlled increase in the complexity of these forward models speeds up the robot's learning. The robot can determine the uncertainty of its forward models, enabling it to explore so as to improve the accuracy of its???????predictions. Paying attention fO the forward models according to how their uncertainty is changing leads to a development in the robot's exploration: its interventions focus on increasingly difficult situations, adapting to the complexity of its motor system. A robot can invert forward models, creating inverse models, in order to estimate the actions that will achieve a desired goal. Switching to socialleaming. the robot uses these inverse model~ to imitate both a demonstrator's gestures and the underlying goals of their movement.Imperial Users onl
    • …
    corecore