168 research outputs found

    Diffusion Variational Autoencoders

    Full text link
    A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.Comment: 10 pages, 8 figures Added an appendix with derivation of asymptotic expansion of KL divergence for heat kernel on arbitrary Riemannian manifolds, and an appendix with new experiments on binarized MNIST. Added a previously missing factor in the asymptotic expansion of the heat kernel and corrected a coefficient in asymptotic expansion KL divergence; further minor edit

    The Riemannian Geometry of Deep Generative Models

    Full text link
    Deep generative models learn a mapping from a low dimensional latent space to a high-dimensional data space. Under certain regularity conditions, these models parameterize nonlinear manifolds in the data space. In this paper, we investigate the Riemannian geometry of these generated manifolds. First, we develop efficient algorithms for computing geodesic curves, which provide an intrinsic notion of distance between points on the manifold. Second, we develop an algorithm for parallel translation of a tangent vector along a path on the manifold. We show how parallel translation can be used to generate analogies, i.e., to transport a change in one data point into a semantically similar change of another data point. Our experiments on real image data show that the manifolds learned by deep generative models, while nonlinear, are surprisingly close to zero curvature. The practical implication is that linear paths in the latent space closely approximate geodesics on the generated manifold. However, further investigation into this phenomenon is warranted, to identify if there are other architectures or datasets where curvature plays a more prominent role. We believe that exploring the Riemannian geometry of deep generative models, using the tools developed in this paper, will be an important step in understanding the high-dimensional, nonlinear spaces these models learn.Comment: 9 page

    Continuous Hierarchical Representations with Poincar\'e Variational Auto-Encoders

    Full text link
    The variational auto-encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces with negative curvature can. We therefore endow VAEs with a Poincar\'e ball model of hyperbolic geometry as a latent space and rigorously derive the necessary methods to work with two main Gaussian generalisations on that space. We empirically show better generalisation to unseen data than the Euclidean counterpart, and can qualitatively and quantitatively better recover hierarchical structures.Comment: Advances in Neural Information Processing System

    Adversarial robustness of VAEs through the lens of local geometry

    Full text link
    In an unsupervised attack on variational autoencoders (VAEs), an adversary finds a small perturbation in an input sample that significantly changes its latent space encoding, thereby compromising the reconstruction for a fixed decoder. A known reason for such vulnerability is the distortions in the latent space resulting from a mismatch between approximated latent posterior and a prior distribution. Consequently, a slight change in an input sample can move its encoding to a low/zero density region in the latent space resulting in an unconstrained generation. This paper demonstrates that an optimal way for an adversary to attack VAEs is to exploit a directional bias of a stochastic pullback metric tensor induced by the encoder and decoder networks. The pullback metric tensor of an encoder measures the change in infinitesimal latent volume from an input to a latent space. Thus, it can be viewed as a lens to analyse the effect of input perturbations leading to latent space distortions. We propose robustness evaluation scores using the eigenspectrum of a pullback metric tensor. Moreover, we empirically show that the scores correlate with the robustness parameter β\beta of the β−\beta-VAE. Since increasing β\beta also degrades reconstruction quality, we demonstrate a simple alternative using \textit{mixup} training to fill the empty regions in the latent space, thus improving robustness with improved reconstruction.Comment: International Conference on Artificial Intelligence and Statistics (AISTATS) 202

    Representation Learning via Manifold Flattening and Reconstruction

    Full text link
    This work proposes an algorithm for explicitly constructing a pair of neural networks that linearize and reconstruct an embedded submanifold, from finite samples of this manifold. Our such-generated neural networks, called Flattening Networks (FlatNet), are theoretically interpretable, computationally feasible at scale, and generalize well to test data, a balance not typically found in manifold-based learning methods. We present empirical results and comparisons to other models on synthetic high-dimensional manifold data and 2D image data. Our code is publicly available.Comment: 44 pages, 19 figure
    • …
    corecore