88,685 research outputs found

    The effect of Hebbian plasticity on the attractors of a dynamical system

    Get PDF
    Poster presentation A central problem in neuroscience is to bridge local synaptic plasticity and the global behavior of a system. It has been shown that Hebbian learning of connections in a feedforward network performs PCA on its inputs [1]. In recurrent Hopfield network with binary units, the Hebbian-learnt patterns form the attractors of the network [2]. Starting from a random recurrent network, Hebbian learning reduces system complexity from chaotic to fixed point [3]. In this paper, we investigate the effect of Hebbian plasticity on the attractors of a continuous dynamical system. In a Hopfield network with binary units, it can be shown that Hebbian learning of an attractor stabilizes it with deepened energy landscape and larger basin of attraction. We are interested in how these properties carry over to continuous dynamical systems. Consider system of the form Math(1) where xi is a real variable, and fi a nondecreasing nonlinear function with range [-1,1]. T is the synaptic matrix, which is assumed to have been learned from orthogonal binary ({1,-1}) patterns ξμ, by the Hebbian rule: Math. Similar to the continuous Hopfield network [4], ξμ are no longer attractors, unless the gains gi are big. Assume that the system settles down to an attractor X*, and undergoes Hebbian plasticity: T´ = T + εX*X*T, where ε > 0 is the learning rate. We study how the attractor dynamics change following this plasticity. We show that, in system (1) under certain general conditions, Hebbian plasticity makes the attractor move towards its corner of the hypercube. Linear stability analysis around the attractor shows that the maximum eigenvalue becomes more negative with learning, indicating a deeper landscape. This in a way improves the system´s ability to retrieve the corresponding stored binary pattern, although the attractor itself is no longer stabilized the way it does in binary Hopfield networks

    Recurrent backpropagation and the dynamical approach to adaptive neural computation

    Get PDF
    Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control

    Flexible Memory Networks

    Get PDF
    Networks of neurons in some brain areas are flexible enough to encode new memories quickly. Using a standard firing rate model of recurrent networks, we develop a theory of flexible memory networks. Our main results characterize networks having the maximal number of flexible memory patterns, given a constraint graph on the network's connectivity matrix. Modulo a mild topological condition, we find a close connection between maximally flexible networks and rank 1 matrices. The topological condition is H_1(X;Z)=0, where X is the clique complex associated to the network's constraint graph; this condition is generically satisfied for large random networks that are not overly sparse. In order to prove our main results, we develop some matrix-theoretic tools and present them in a self-contained section independent of the neuroscience context.Comment: Accepted to Bulletin of Mathematical Biology, 11 July 201

    A three-threshold learning rule approaches the maximal capacity of recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model has a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.Comment: 24 pages, 10 figures, to be published in PLOS Computational Biolog

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset
    • …
    corecore