724 research outputs found

    Facial Expression Recognition

    Get PDF

    Fully automatic 3D facial expression recognition using a region-based approach

    Full text link

    Integration of 2D Textural and 3D Geometric Features for Robust Facial Expression Recognition

    Get PDF
    Recognition of facial expressions is critical for successful social interactions and relationships. Facial expressions transmit emotional information, which is critical for human-machine interaction; therefore, significant research in computer vision has been conducted, with promising findings in using facial expression detection in both academia and industry. 3D pictures acquired enormous popularity owing to their ability to overcome some of the constraints inherent in 2D imagery, such as lighting and variation. We present a method for recognizing facial expressions in this article by combining features extracted from 2D textured pictures and 3D geometric data using the Local Binary Pattern (LBP) and the 3D Voxel Histogram of Oriented Gradients (3DVHOG), respectively. We performed various pre-processing operations using the MDPA-FACE3D and Bosphorus datasets, then we carried out classification process to classify images into seven universal emotions, namely anger, disgust, fear, happiness, sadness, neutral, and surprise. Using Support Vector Machine classifier, we achieved the accuracy of 88.5 % and 92.9 % on the MDPA-FACE3D and the Bosphorus datasets, respectively

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Automatic classification of facial morphology for medical applications

    Get PDF
    Facial morphology measurement and classification play important role in the face anthropometry of many medical applications. This usually involves the investigation of medical abnormalities where specific facial features are studied by taking a number of measurements of the facial area under investigation. The measurements are often obtained from the three-dimensional (3D) scans of the faces; however, the measurements are often made manually, which is tedious and time consuming process. Moreover, in gene related studies thousands of measurements may be necessary in order to find statistically significant relationships between facial features and genes. Normative studies, from which typical populous models can be built, also require many measurements. Thus an automatic method to extract morphological measurements and interpret them is desirable. In this article, an automatic method for classification of facial morphology on the basis of a number of geometric measurements obtained automatically from 3D facial scans is presented. Among different facial features the philtrum, which is the vertical groove extending from the nose to the upper lip and the lip area, plays an important role in defining the interaction between the genes and craniofacial anomalies such as, for example, cleft lip and palate. In this paper, geometric features are analysed for their suitability to classify philtrum into three classes previously proposed by medical experts. Moreover, further analysis is conducted to assess the best number of classes to model the underlying data distribution from the point of view of classification accuracy. The obtained classification results are compared with the ground truth manual labelling of 3D face meshes provided by a medical expert. The dataset used for this research is taken from ALSPAC dataset and consists of 1000 3D face meshes. The proposed method achieves classification accuracy of 97% for this data set using the Mean, Minimum and Maximum curvature features in combination
    • …
    corecore