35,730 research outputs found

    Understanding the efficacy, reliability and resiliency of computer vision techniques for malware detection and future research directions

    Full text link
    My research lies in the intersection of security and machine learning. This overview summarizes one component of my research: combining computer vision with malware exploit detection for enhanced security solutions. I will present the perspectives of efficacy, reliability and resiliency to formulate threat detection as computer vision problems and develop state-of-the-art image-based malware classification. Representing malware binary as images provides a direct visualization of data samples, reduces the efforts for feature extraction, and consumes the whole binary for holistic structural analysis. Employing transfer learning of deep neural networks effective for large scale image classification to malware classification demonstrates superior classification efficacy compared with classical machine learning algorithms. To enhance reliability of these vision-based malware detectors, interpretation frameworks can be constructed on the malware visual representations and useful for extracting faithful explanation, so that security practitioners have confidence in the model before deployment. In cyber-security applications, we should always assume that a malware writer constantly modifies code to bypass detection. Addressing the resiliency of the malware detectors is equivalently important as efficacy and reliability. Via understanding the attack surfaces of machine learning models used for malware detection, we can greatly improve the robustness of the algorithms to combat malware adversaries in the wild. Finally I will discuss future research directions worth pursuing in this research community.Comment: Repor

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval

    Full text link
    The goal of this work is the computation of very compact binary hashes for image instance retrieval. Our approach has two novel contributions. The first one is Nested Invariance Pooling (NIP), a method inspired from i-theory, a mathematical theory for computing group invariant transformations with feed-forward neural networks. NIP is able to produce compact and well-performing descriptors with visual representations extracted from convolutional neural networks. We specifically incorporate scale, translation and rotation invariances but the scheme can be extended to any arbitrary sets of transformations. We also show that using moments of increasing order throughout nesting is important. The NIP descriptors are then hashed to the target code size (32-256 bits) with a Restricted Boltzmann Machine with a novel batch-level regularization scheme specifically designed for the purpose of hashing (RBMH). A thorough empirical evaluation with state-of-the-art shows that the results obtained both with the NIP descriptors and the NIP+RBMH hashes are consistently outstanding across a wide range of datasets.Comment: Image Instance Retrieval, CNN, Invariant Representation, Hashing, Unsupervised Learning, Regularization. arXiv admin note: text overlap with arXiv:1601.0209

    Correlation Hashing Network for Efficient Cross-Modal Retrieval

    Full text link
    Hashing is widely applied to approximate nearest neighbor search for large-scale multimodal retrieval with storage and computation efficiency. Cross-modal hashing improves the quality of hash coding by exploiting semantic correlations across different modalities. Existing cross-modal hashing methods first transform data into low-dimensional feature vectors, and then generate binary codes by another separate quantization step. However, suboptimal hash codes may be generated since the quantization error is not explicitly minimized and the feature representation is not jointly optimized with the binary codes. This paper presents a Correlation Hashing Network (CHN) approach to cross-modal hashing, which jointly learns good data representation tailored to hash coding and formally controls the quantization error. The proposed CHN is a hybrid deep architecture that constitutes a convolutional neural network for learning good image representations, a multilayer perception for learning good text representations, two hashing layers for generating compact binary codes, and a structured max-margin loss that integrates all things together to enable learning similarity-preserving and high-quality hash codes. Extensive empirical study shows that CHN yields state of the art cross-modal retrieval performance on standard benchmarks.Comment: 7 page

    Neuronal Synchrony in Complex-Valued Deep Networks

    Full text link
    Deep learning has recently led to great successes in tasks such as image recognition (e.g Krizhevsky et al., 2012). However, deep networks are still outmatched by the power and versatility of the brain, perhaps in part due to the richer neuronal computations available to cortical circuits. The challenge is to identify which neuronal mechanisms are relevant, and to find suitable abstractions to model them. Here, we show how aspects of spike timing, long hypothesized to play a crucial role in cortical information processing, could be incorporated into deep networks to build richer, versatile representations. We introduce a neural network formulation based on complex-valued neuronal units that is not only biologically meaningful but also amenable to a variety of deep learning frameworks. Here, units are attributed both a firing rate and a phase, the latter indicating properties of spike timing. We show how this formulation qualitatively captures several aspects thought to be related to neuronal synchrony, including gating of information processing and dynamic binding of distributed object representations. Focusing on the latter, we demonstrate the potential of the approach in several simple experiments. Thus, neuronal synchrony could be a flexible mechanism that fulfills multiple functional roles in deep networks.Comment: ICLR 2014, accepted to conference track. This version: added proceedings note, minor addition

    Face Attribute Prediction Using Off-the-Shelf CNN Features

    Full text link
    Predicting attributes from face images in the wild is a challenging computer vision problem. To automatically describe face attributes from face containing images, traditionally one needs to cascade three technical blocks --- face localization, facial descriptor construction, and attribute classification --- in a pipeline. As a typical classification problem, face attribute prediction has been addressed using deep learning. Current state-of-the-art performance was achieved by using two cascaded Convolutional Neural Networks (CNNs), which were specifically trained to learn face localization and attribute description. In this paper, we experiment with an alternative way of employing the power of deep representations from CNNs. Combining with conventional face localization techniques, we use off-the-shelf architectures trained for face recognition to build facial descriptors. Recognizing that the describable face attributes are diverse, our face descriptors are constructed from different levels of the CNNs for different attributes to best facilitate face attribute prediction. Experiments on two large datasets, LFWA and CelebA, show that our approach is entirely comparable to the state-of-the-art. Our findings not only demonstrate an efficient face attribute prediction approach, but also raise an important question: how to leverage the power of off-the-shelf CNN representations for novel tasks.Comment: In proceeding of 2016 International Conference on Biometrics (ICB

    Reward Learning from Narrated Demonstrations

    Full text link
    Humans effortlessly "program" one another by communicating goals and desires in natural language. In contrast, humans program robotic behaviours by indicating desired object locations and poses to be achieved, by providing RGB images of goal configurations, or supplying a demonstration to be imitated. None of these methods generalize across environment variations, and they convey the goal in awkward technical terms. This work proposes joint learning of natural language grounding and instructable behavioural policies reinforced by perceptual detectors of natural language expressions, grounded to the sensory inputs of the robotic agent. Our supervision is narrated visual demonstrations(NVD), which are visual demonstrations paired with verbal narration (as opposed to being silent). We introduce a dataset of NVD where teachers perform activities while describing them in detail. We map the teachers' descriptions to perceptual reward detectors, and use them to train corresponding behavioural policies in simulation.We empirically show that our instructable agents (i) learn visual reward detectors using a small number of examples by exploiting hard negative mined configurations from demonstration dynamics, (ii) develop pick-and place policies using learned visual reward detectors, (iii) benefit from object-factorized state representations that mimic the syntactic structure of natural language goal expressions, and (iv) can execute behaviours that involve novel objects in novel locations at test time, instructed by natural language.Comment: The work has been accepted to Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Deep Hashing with Category Mask for Fast Video Retrieval

    Full text link
    This paper proposes an end-to-end deep hashing framework with category mask for fast video retrieval. We train our network in a supervised way by fully exploiting inter-class diversity and intra-class identity. Classification loss is optimized to maximize inter-class diversity, while intra-pair is introduced to learn representative intra-class identity. We investigate the binary bits distribution related to categories and find out that the effectiveness of binary bits is highly correlated with data categories, and some bits may degrade classification performance of some categories. We then design hash code generation scheme with category mask to filter out bits with negative contribution. Experimental results demonstrate the proposed method outperforms several state-of-the-arts under various evaluation metrics on public datasets
    • …
    corecore