28,099 research outputs found

    Neural Integration of Continuous Dynamics

    Full text link
    Neural dynamical systems are dynamical systems that are described at least in part by neural networks. The class of continuous-time neural dynamical systems must, however, be numerically integrated for simulation and learning. Here, we present a compact neural circuit for two common numerical integrators: the explicit fixed-step Runge-Kutta method of any order and the semi-implicit/predictor-corrector Adams-Bashforth-Moulton method. Modeled as constant-sized recurrent networks embedding a continuous neural differential equation, they achieve fully neural temporal output. Using the polynomial class of dynamical systems, we demonstrate the equivalence of neural and numerical integration

    Physics Guided Recurrent Neural Networks For Modeling Dynamical Systems: Application to Monitoring Water Temperature And Quality In Lakes

    Full text link
    In this paper, we introduce a novel framework for combining scientific knowledge within physics-based models and recurrent neural networks to advance scientific discovery in many dynamical systems. We will first describe the use of outputs from physics-based models in learning a hybrid-physics-data model. Then, we further incorporate physical knowledge in real-world dynamical systems as additional constraints for training recurrent neural networks. We will apply this approach on modeling lake temperature and quality where we take into account the physical constraints along both the depth dimension and time dimension. By using scientific knowledge to guide the construction and learning the data-driven model, we demonstrate that this method can achieve better prediction accuracy as well as scientific consistency of results.Comment: 3 pages, 3 figures, 8th International Workshop on Climate Informatic

    Variational Integrator Networks for Physically Meaningful Embeddings

    Get PDF
    Learning workable representations of dynamical systems is becoming an increasingly important problem in a number of application areas. By leveraging recent work connecting deep neural networks to systems of differential equations, we propose variational integrator networks, a class of neural network architectures designed to preserve the geometric structure of physical systems. This class of network architectures facilitates accurate long-term prediction, interpretability, and data-efficient learning, while still remaining highly flexible and capable of modeling complex behavior. We demonstrate that they can accurately learn dynamical systems from both noisy observations in phase space and from image pixels within which the unknown dynamics are embedded

    Separable Hamiltonian Neural Networks

    Full text link
    The modelling of dynamical systems from discrete observations is a challenge faced by modern scientific and engineering data systems. Hamiltonian systems are one such fundamental and ubiquitous class of dynamical systems. Hamiltonian neural networks are state-of-the-art models that unsupervised-ly regress the Hamiltonian of a dynamical system from discrete observations of its vector field under the learning bias of Hamilton's equations. Yet Hamiltonian dynamics are often complicated, especially in higher dimensions where the state space of the Hamiltonian system is large relative to the number of samples. A recently discovered remedy to alleviate the complexity between state variables in the state space is to leverage the additive separability of the Hamiltonian system and embed that additive separability into the Hamiltonian neural network. Following the nomenclature of physics-informed machine learning, we propose three separable Hamiltonian neural networks. These models embed additive separability within Hamiltonian neural networks. The first model uses additive separability to quadratically scale the amount of data for training Hamiltonian neural networks. The second model embeds additive separability within the loss function of the Hamiltonian neural network. The third model embeds additive separability through the architecture of the Hamiltonian neural network using conjoined multilayer perceptions. We empirically compare the three models against state-of-the-art Hamiltonian neural networks, and demonstrate that the separable Hamiltonian neural networks, which alleviate complexity between the state variables, are more effective at regressing the Hamiltonian and its vector field.Comment: 11 page

    Predictive State Recurrent Neural Networks

    Full text link
    We present a new model, Predictive State Recurrent Neural Networks (PSRNNs), for filtering and prediction in dynamical systems. PSRNNs draw on insights from both Recurrent Neural Networks (RNNs) and Predictive State Representations (PSRs), and inherit advantages from both types of models. Like many successful RNN architectures, PSRNNs use (potentially deeply composed) bilinear transfer functions to combine information from multiple sources. We show that such bilinear functions arise naturally from state updates in Bayes filters like PSRs, in which observations can be viewed as gating belief states. We also show that PSRNNs can be learned effectively by combining Backpropogation Through Time (BPTT) with an initialization derived from a statistically consistent learning algorithm for PSRs called two-stage regression (2SR). Finally, we show that PSRNNs can be factorized using tensor decomposition, reducing model size and suggesting interesting connections to existing multiplicative architectures such as LSTMs. We applied PSRNNs to 4 datasets, and showed that we outperform several popular alternative approaches to modeling dynamical systems in all cases

    Invertible generalized synchronization: A putative mechanism for implicit learning in biological and artificial neural systems

    Full text link
    Regardless of the marked differences between biological and artificial neural systems, one fundamental similarity is that they are essentially dynamical systems that can learn to imitate other dynamical systems, without knowing their governing equations. The brain is able to learn the dynamic nature of the physical world via experience; analogously, artificial neural systems can learn the long-term behavior of complex dynamical systems from data. Yet, precisely how this implicit learning occurs remains unknown. Here, we draw inspiration from human neuroscience and from reservoir computing to propose a first-principles framework explicating putative mechanisms of implicit learning. Specifically, we show that an arbitrary dynamical system implicitly learns other dynamical attractors by embedding them into its own phase space through invertible generalized synchronization. By sustaining the embedding through fine-tuned feedback loops, the arbitrary dynamical system can imitate the attractor dynamics it has learned. To evaluate the mechanism's relevance, we construct several distinct neural network models that adaptively learn and imitate multiple attractors. We observe and explain the emergence of 5 distinct phenomena reminiscent of cognitive functions: (i) imitating a dynamical system purely from learning the time series, (ii) learning multiple attractors by a single system, (iii) switching among the imitations of multiple attractors, either spontaneously or driven by external cues, (iv) filling-in missing variables from incomplete observations of a learned dynamical system, and (v) deciphering superimposed input from different dynamical systems. Collectively, our findings support the notion that artificial and biological neural networks can learn the dynamic nature of their environment, and systems within their environment, through the mechanism of invertible generalized synchronization

    Optimal Control Via Neural Networks: A Convex Approach

    Full text link
    Control of complex systems involves both system identification and controller design. Deep neural networks have proven to be successful in many identification tasks, however, from model-based control perspective, these networks are difficult to work with because they are typically nonlinear and nonconvex. Therefore many systems are still identified and controlled based on simple linear models despite their poor representation capability. In this paper we bridge the gap between model accuracy and control tractability faced by neural networks, by explicitly constructing networks that are convex with respect to their inputs. We show that these input convex networks can be trained to obtain accurate models of complex physical systems. In particular, we design input convex recurrent neural networks to capture temporal behavior of dynamical systems. Then optimal controllers can be achieved via solving a convex model predictive control problem. Experiment results demonstrate the good potential of the proposed input convex neural network based approach in a variety of control applications. In particular we show that in the MuJoCo locomotion tasks, we could achieve over 10% higher performance using 5* less time compared with state-of-the-art model-based reinforcement learning method; and in the building HVAC control example, our method achieved up to 20% energy reduction compared with classic linear models.Comment: Published as a conference paper at ICLR 2019: https://openreview.net/forum?id=H1MW72AcK

    Physics guided neural networks for modelling of non-linear dynamics

    Get PDF
    The success of the current wave of artificial intelligence can be partly attributed to deep neural networks, which have proven to be very effective in learning complex patterns from large datasets with minimal human intervention. However, it is difficult to train these models on complex dynamical systems from data alone due to their low data efficiency and sensitivity to hyperparameters and initialisation. This work demonstrates that injection of partially known information at an intermediate layer in a DNN can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training. The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory: the Lotka–Volterra, Duffing, Van der Pol, Lorenz, and Henon–Heiles systems.publishedVersio

    Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach

    Full text link
    The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neural network components at various stages of sensing and control. This paper addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLP) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.Comment: 10 pages, 8 figures. IEEE Transactions on Neural Networks and Learning System
    • …
    corecore