1,325 research outputs found

    Towards Improving Robustness Against Common Corruptions in Object Detectors Using Adversarial Contrastive Learning

    Full text link
    Neural networks have revolutionized various domains, exhibiting remarkable accuracy in tasks like natural language processing and computer vision. However, their vulnerability to slight alterations in input samples poses challenges, particularly in safety-critical applications like autonomous driving. Current approaches, such as introducing distortions during training, fall short in addressing unforeseen corruptions. This paper proposes an innovative adversarial contrastive learning framework to enhance neural network robustness simultaneously against adversarial attacks and common corruptions. By generating instance-wise adversarial examples and optimizing contrastive loss, our method fosters representations that resist adversarial perturbations and remain robust in real-world scenarios. Subsequent contrastive learning then strengthens the similarity between clean samples and their adversarial counterparts, fostering representations resistant to both adversarial attacks and common distortions. By focusing on improving performance under adversarial and real-world conditions, our approach aims to bolster the robustness of neural networks in safety-critical applications, such as autonomous vehicles navigating unpredictable weather conditions. We anticipate that this framework will contribute to advancing the reliability of neural networks in challenging environments, facilitating their widespread adoption in mission-critical scenarios

    OTJR: Optimal Transport Meets Optimal Jacobian Regularization for Adversarial Robustness

    Full text link
    The Web, as a rich medium of diverse content, has been constantly under the threat of malicious entities exploiting its vulnerabilities, especially with the rapid proliferation of deep learning applications in various web services. One such vulnerability, crucial to the fidelity and integrity of web content, is the susceptibility of deep neural networks to adversarial perturbations, especially concerning images - a dominant form of data on the web. In light of the recent advancements in the robustness of classifiers, we delve deep into the intricacies of adversarial training (AT) and Jacobian regularization, two pivotal defenses. Our work {is the} first carefully analyzes and characterizes these two schools of approaches, both theoretically and empirically, to demonstrate how each approach impacts the robust learning of a classifier. Next, we propose our novel Optimal Transport with Jacobian regularization method, dubbed~\SystemName, jointly incorporating the input-output Jacobian regularization into the AT by leveraging the optimal transport theory. In particular, we employ the Sliced Wasserstein (SW) distance that can efficiently push the adversarial samples' representations closer to those of clean samples, regardless of the number of classes within the dataset. The SW distance provides the adversarial samples' movement directions, which are much more informative and powerful for the Jacobian regularization. Our empirical evaluations set a new standard in the domain, with our method achieving commendable accuracies of 51.41\% on the ~\CIFAR-10 and 28.49\% on the ~\CIFAR-100 datasets under the AutoAttack metric. In a real-world demonstration, we subject images sourced from the Internet to online adversarial attacks, reinforcing the efficacy and relevance of our model in defending against sophisticated web-image perturbations

    Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey

    Full text link
    Adversarial attacks and defenses in machine learning and deep neural network have been gaining significant attention due to the rapidly growing applications of deep learning in the Internet and relevant scenarios. This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques, with a focus on deep neural network-based classification models. Specifically, we conduct a comprehensive classification of recent adversarial attack methods and state-of-the-art adversarial defense techniques based on attack principles, and present them in visually appealing tables and tree diagrams. This is based on a rigorous evaluation of the existing works, including an analysis of their strengths and limitations. We also categorize the methods into counter-attack detection and robustness enhancement, with a specific focus on regularization-based methods for enhancing robustness. New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks, and a hierarchical classification of the latest defense methods is provided, highlighting the challenges of balancing training costs with performance, maintaining clean accuracy, overcoming the effect of gradient masking, and ensuring method transferability. At last, the lessons learned and open challenges are summarized with future research opportunities recommended.Comment: 46 pages, 21 figure

    A Survey on Transferability of Adversarial Examples across Deep Neural Networks

    Full text link
    The emergence of Deep Neural Networks (DNNs) has revolutionized various domains, enabling the resolution of complex tasks spanning image recognition, natural language processing, and scientific problem-solving. However, this progress has also exposed a concerning vulnerability: adversarial examples. These crafted inputs, imperceptible to humans, can manipulate machine learning models into making erroneous predictions, raising concerns for safety-critical applications. An intriguing property of this phenomenon is the transferability of adversarial examples, where perturbations crafted for one model can deceive another, often with a different architecture. This intriguing property enables "black-box" attacks, circumventing the need for detailed knowledge of the target model. This survey explores the landscape of the adversarial transferability of adversarial examples. We categorize existing methodologies to enhance adversarial transferability and discuss the fundamental principles guiding each approach. While the predominant body of research primarily concentrates on image classification, we also extend our discussion to encompass other vision tasks and beyond. Challenges and future prospects are discussed, highlighting the importance of fortifying DNNs against adversarial vulnerabilities in an evolving landscape

    Learning Transferable Adversarial Robust Representations via Multi-view Consistency

    Full text link
    Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.Comment: *Equal contribution (Author ordering determined by coin flip). NeurIPS SafetyML workshop 2022, Under revie
    • …
    corecore