26 research outputs found

    Interpretable timbre synthesis using variational autoencoders regularized on timbre descriptors

    Get PDF
    Controllable timbre synthesis has been a subject of research for several decades, and deep neural networks have been the most successful in this area. Deep generative models such as Variational Autoencoders (VAEs) have the ability to generate a high-level representation of audio while providing a structured latent space. Despite their advantages, the interpretability of these latent spaces in terms of human perception is often limited. To address this limitation and enhance the control over timbre generation, we propose a regularized VAE-based latent space that incorporates timbre descriptors. Moreover, we suggest a more concise representation of sound by utilizing its harmonic content, in order to minimize the dimensionality of the latent space

    Interpretable Timbre Synthesis using Variational Autoencoders Regularized on Timbre Descriptors

    Full text link
    Controllable timbre synthesis has been a subject of research for several decades, and deep neural networks have been the most successful in this area. Deep generative models such as Variational Autoencoders (VAEs) have the ability to generate a high-level representation of audio while providing a structured latent space. Despite their advantages, the interpretability of these latent spaces in terms of human perception is often limited. To address this limitation and enhance the control over timbre generation, we propose a regularized VAE-based latent space that incorporates timbre descriptors. Moreover, we suggest a more concise representation of sound by utilizing its harmonic content, in order to minimize the dimensionality of the latent space

    An Exploration of the Latent Space of a Convolutional Variational Autoencoder for the Generation of Musical Instrument Tones

    Get PDF
    Variational Autoencoders (VAEs) constitute one of the most significant deep generative models for the creation of synthetic samples. In the field of audio synthesis, VAEs have been widely used for the generation of natural and expressive sounds, such as music or speech. However, VAEs are often considered black boxes and the attributes that contribute to the synthesis of a sound are yet unsolved. Existing research focused on the way input data can influence the generation of latent space, and how this latent space can create synthetic data, is still insufficient. In this manuscript, we investigate the interpretability of the latent space of VAEs and the impact of each attribute of this space on the generation of synthetic instrumental notes. The contribution to the body of knowledge of this research is to offer, for both the XAI and sound community, an approach for interpreting how the latent space generates new samples. This is based on sensitivity and feature ablation analyses, and descriptive statistics

    Drum Synthesis and Rhythmic Transformation with Adversarial Autoencoders

    Get PDF
    Creative rhythmic transformations of musical audio refer to automated methods for manipulation of temporally-relevant sounds in time. This paper presents a method for joint synthesis and rhythm transformation of drum sounds through the use of adversarial autoencoders (AAE). Users may navigate both the timbre and rhythm of drum patterns in audio recordings through expressive control over a low-dimensional latent space. The model is based on an AAE with Gaussian mixture latent distributions that introduce rhythmic pattern conditioning to represent a wide variety of drum performances. The AAE is trained on a dataset of bar-length segments of percussion recordings, along with their clustered rhythmic pattern labels. The decoder is conditioned during adversarial training for mixing of data-driven rhythmic and timbral properties. The system is trained with over 500000 bars from 5418 tracks in popular datasets covering various musical genres. In an evaluation using real percussion recordings, the reconstruction accuracy and latent space interpolation between drum performances are investigated for audio generation conditioned by target rhythmic patterns

    MANIFOLD REPRESENTATIONS OF MUSICAL SIGNALS AND GENERATIVE SPACES

    Get PDF
    Tra i diversi campi di ricerca nell\u2019ambito dell\u2019informatica musicale, la sintesi e la generazione di segnali audio incarna la pluridisciplinalita\u300 di questo settore, nutrendo insieme le pratiche scientifiche e musicale dalla sua creazione. Inerente all\u2019informatica dalla sua creazione, la generazione audio ha ispirato numerosi approcci, evolvendo colle pratiche musicale e gli progressi tecnologici e scientifici. Inoltre, alcuni processi di sintesi permettono anche il processo inverso, denominato analisi, in modo che i parametri di sintesi possono anche essere parzialmente o totalmente estratti dai suoni, dando una rappresentazione alternativa ai segnali analizzati. Per di piu\u300, la recente ascesa dei algoritmi di l\u2019apprendimento automatico ha vivamente interrogato il settore della ricerca scientifica, fornendo potenti data-centered metodi che sollevavano diversi epistemologici interrogativi, nonostante i sui efficacia. Particolarmente, un tipo di metodi di apprendimento automatico, denominati modelli generativi, si concentrano sulla generazione di contenuto originale usando le caratteristiche che hanno estratti dei dati analizzati. In tal caso, questi modelli non hanno soltanto interrogato i precedenti metodi di generazione, ma anche sul modo di integrare questi algoritmi nelle pratiche artistiche. Mentre questi metodi sono progressivamente introdotti nel settore del trattamento delle immagini, la loro applicazione per la sintesi di segnali audio e ancora molto marginale. In questo lavoro, il nostro obiettivo e di proporre un nuovo metodo di audio sintesi basato su questi nuovi tipi di generativi modelli, rafforazti dalle nuove avanzati dell\u2019apprendimento automatico. Al primo posto, facciamo una revisione dei approcci esistenti nei settori dei sistemi generativi e di sintesi sonore, focalizzando sul posto di nostro lavoro rispetto a questi disciplini e che cosa possiamo aspettare di questa collazione. In seguito, studiamo in maniera piu\u300 precisa i modelli generativi, e come possiamo utilizzare questi recenti avanzati per l\u2019apprendimento di complesse distribuzione di suoni, in un modo che sia flessibile e nel flusso creativo del utente. Quindi proponiamo un processo di inferenza / generazione, il quale rifletta i processi di analisi/sintesi che sono molto usati nel settore del trattamento del segnale audio, usando modelli latenti, che sono basati sull\u2019utilizzazione di un spazio continuato di alto livello, che usiamo per controllare la generazione. Studiamo dapprima i risultati preliminari ottenuti con informazione spettrale estratte da diversi tipi di dati, che valutiamo qualitativamente e quantitativamente. Successiva- mente, studiamo come fare per rendere questi metodi piu\u300 adattati ai segnali audio, fronteggiando tre diversi aspetti. Primo, proponiamo due diversi metodi di regolarizzazione di questo generativo spazio che sono specificamente sviluppati per l\u2019audio : una strategia basata sulla traduzione segnali / simboli, e una basata su vincoli percettivi. Poi, proponiamo diversi metodi per fronteggiare il aspetto temporale dei segnali audio, basati sull\u2019estrazione di rappresentazioni multiscala e sulla predizione, che permettono ai generativi spazi ottenuti di anche modellare l\u2019aspetto dinamico di questi segnali. Per finire, cambiamo il nostro approccio scientifico per un punto di visto piu\u301 ispirato dall\u2019idea di ricerca e creazione. Primo, descriviamo l\u2019architettura e il design della nostra libreria open-source, vsacids, sviluppata per permettere a esperti o non-esperti musicisti di provare questi nuovi metodi di sintesi. Poi, proponiamo una prima utilizzazione del nostro modello con la creazione di una performance in real- time, chiamata \ue6go, basata insieme sulla nostra libreria vsacids e sull\u2019uso di une agente di esplorazione, imparando con rinforzo nel corso della composizione. Finalmente, tramo dal lavoro presentato alcuni conclusioni sui diversi modi di migliorare e rinforzare il metodo di sintesi proposto, nonche\u301 eventuale applicazione artistiche.Among the diverse research fields within computer music, synthesis and generation of audio signals epitomize the cross-disciplinarity of this domain, jointly nourishing both scientific and artistic practices since its creation. Inherent in computer music since its genesis, audio generation has inspired numerous approaches, evolving both with musical practices and scientific/technical advances. Moreover, some syn- thesis processes also naturally handle the reverse process, named analysis, such that synthesis parameters can also be partially or totally extracted from actual sounds, and providing an alternative representation of the analyzed audio signals. On top of that, the recent rise of machine learning algorithms earnestly questioned the field of scientific research, bringing powerful data-centred methods that raised several epistemological questions amongst researchers, in spite of their efficiency. Especially, a family of machine learning methods, called generative models, are focused on the generation of original content using features extracted from an existing dataset. In that case, such methods not only questioned previous approaches in generation, but also the way of integrating this methods into existing creative processes. While these new generative frameworks are progressively introduced in the domain of image generation, the application of such generative techniques in audio synthesis is still marginal. In this work, we aim to propose a new audio analysis-synthesis framework based on these modern generative models, enhanced by recent advances in machine learning. We first review existing approaches, both in sound synthesis and in generative machine learning, and focus on how our work inserts itself in both practices and what can be expected from their collation. Subsequently, we focus a little more on generative models, and how modern advances in the domain can be exploited to allow us learning complex sound distributions, while being sufficiently flexible to be integrated in the creative flow of the user. We then propose an inference / generation process, mirroring analysis/synthesis paradigms that are natural in the audio processing domain, using latent models that are based on a continuous higher-level space, that we use to control the generation. We first provide preliminary results of our method applied on spectral information, extracted from several datasets, and evaluate both qualitatively and quantitatively the obtained results. Subsequently, we study how to make these methods more suitable for learning audio data, tackling successively three different aspects. First, we propose two different latent regularization strategies specifically designed for audio, based on and signal / symbol translation and perceptual constraints. Then, we propose different methods to address the inner temporality of musical signals, based on the extraction of multi-scale representations and on prediction, that allow the obtained generative spaces that also model the dynamics of the signal. As a last chapter, we swap our scientific approach to a more research & creation-oriented point of view: first, we describe the architecture and the design of our open-source library, vsacids, aiming to be used by expert and non-expert music makers as an integrated creation tool. Then, we propose an first musical use of our system by the creation of a real-time performance, called aego, based jointly on our framework vsacids and an explorative agent using reinforcement learning to be trained during the performance. Finally, we draw some conclusions on the different manners to improve and reinforce the proposed generation method, as well as possible further creative applications.A\u300 travers les diffe\u301rents domaines de recherche de la musique computationnelle, l\u2019analysie et la ge\u301ne\u301ration de signaux audio sont l\u2019exemple parfait de la trans-disciplinarite\u301 de ce domaine, nourrissant simultane\u301ment les pratiques scientifiques et artistiques depuis leur cre\u301ation. Inte\u301gre\u301e a\u300 la musique computationnelle depuis sa cre\u301ation, la synthe\u300se sonore a inspire\u301 de nombreuses approches musicales et scientifiques, e\u301voluant de pair avec les pratiques musicales et les avance\u301es technologiques et scientifiques de son temps. De plus, certaines me\u301thodes de synthe\u300se sonore permettent aussi le processus inverse, appele\u301 analyse, de sorte que les parame\u300tres de synthe\u300se d\u2019un certain ge\u301ne\u301rateur peuvent e\u302tre en partie ou entie\u300rement obtenus a\u300 partir de sons donne\u301s, pouvant ainsi e\u302tre conside\u301re\u301s comme une repre\u301sentation alternative des signaux analyse\u301s. Paralle\u300lement, l\u2019inte\u301re\u302t croissant souleve\u301 par les algorithmes d\u2019apprentissage automatique a vivement questionne\u301 le monde scientifique, apportant de puissantes me\u301thodes d\u2019analyse de donne\u301es suscitant de nombreux questionnements e\u301piste\u301mologiques chez les chercheurs, en de\u301pit de leur effectivite\u301 pratique. En particulier, une famille de me\u301thodes d\u2019apprentissage automatique, nomme\u301e mode\u300les ge\u301ne\u301ratifs, s\u2019inte\u301ressent a\u300 la ge\u301ne\u301ration de contenus originaux a\u300 partir de caracte\u301ristiques extraites directement des donne\u301es analyse\u301es. Ces me\u301thodes n\u2019interrogent pas seulement les approches pre\u301ce\u301dentes, mais aussi sur l\u2019inte\u301gration de ces nouvelles me\u301thodes dans les processus cre\u301atifs existants. Pourtant, alors que ces nouveaux processus ge\u301ne\u301ratifs sont progressivement inte\u301gre\u301s dans le domaine la ge\u301ne\u301ration d\u2019image, l\u2019application de ces techniques en synthe\u300se audio reste marginale. Dans cette the\u300se, nous proposons une nouvelle me\u301thode d\u2019analyse-synthe\u300se base\u301s sur ces derniers mode\u300les ge\u301ne\u301ratifs, depuis renforce\u301s par les avance\u301es modernes dans le domaine de l\u2019apprentissage automatique. Dans un premier temps, nous examinerons les approches existantes dans le domaine des syste\u300mes ge\u301ne\u301ratifs, sur comment notre travail peut s\u2019inse\u301rer dans les pratiques de synthe\u300se sonore existantes, et que peut-on espe\u301rer de l\u2019hybridation de ces deux approches. Ensuite, nous nous focaliserons plus pre\u301cise\u301ment sur comment les re\u301centes avance\u301es accomplies dans ce domaine dans ce domaine peuvent e\u302tre exploite\u301es pour l\u2019apprentissage de distributions sonores complexes, tout en e\u301tant suffisamment flexibles pour e\u302tre inte\u301gre\u301es dans le processus cre\u301atif de l\u2019utilisateur. Nous proposons donc un processus d\u2019infe\u301rence / g\ue9n\ue9ration, refle\u301tant les paradigmes d\u2019analyse-synthe\u300se existant dans le domaine de ge\u301ne\u301ration audio, base\u301 sur l\u2019usage de mode\u300les latents continus que l\u2019on peut utiliser pour contro\u302ler la ge\u301ne\u301ration. Pour ce faire, nous e\u301tudierons de\u301ja\u300 les re\u301sultats pre\u301liminaires obtenus par cette me\u301thode sur l\u2019apprentissage de distributions spectrales, prises d\u2019ensembles de donne\u301es diversifie\u301s, en adoptant une approche a\u300 la fois quantitative et qualitative. Ensuite, nous proposerons d\u2019ame\u301liorer ces me\u301thodes de manie\u300re spe\u301cifique a\u300 l\u2019audio sur trois aspects distincts. D\u2019abord, nous proposons deux strate\u301gies de re\u301gularisation diffe\u301rentes pour l\u2019analyse de signaux audio : une base\u301e sur la traduction signal/ symbole, ainsi qu\u2019une autre base\u301e sur des contraintes perceptives. Nous passerons par la suite a\u300 la dimension temporelle de ces signaux audio, proposant de nouvelles me\u301thodes base\u301es sur l\u2019extraction de repre\u301sentations temporelles multi-e\u301chelle et sur une ta\u302che supple\u301mentaire de pre\u301diction, permettant la mode\u301lisation de caracte\u301ristiques dynamiques par les espaces ge\u301ne\u301ratifs obtenus. En dernier lieu, nous passerons d\u2019une approche scientifique a\u300 une approche plus oriente\u301e vers un point de vue recherche & cre\u301ation. Premie\u300rement, nous pre\u301senterons notre librairie open-source, vsacids, visant a\u300 e\u302tre employe\u301e par des cre\u301ateurs experts et non-experts comme un outil inte\u301gre\u301. Ensuite, nous proposons une premie\u300re utilisation musicale de notre syste\u300me par la cre\u301ation d\u2019une performance temps re\u301el, nomme\u301e \ue6go, base\u301e a\u300 la fois sur notre librarie et sur un agent d\u2019exploration appris dynamiquement par renforcement au cours de la performance. Enfin, nous tirons les conclusions du travail accompli jusqu\u2019a\u300 maintenant, concernant les possibles ame\u301liorations et de\u301veloppements de la me\u301thode de synthe\u300se propose\u301e, ainsi que sur de possibles applications cre\u301atives

    Music-STAR: a Style Translation system for Audio-based Rearrangement

    Get PDF
    Music style translation has recently gained attention among music processing studies. It aims to generate variations of existing music pieces by altering the style-variant characteristics of the original music piece, while content such as the melody remains unchanged. These alterations could involve timbre translation, reharmonization, or music rearrangement. In this thesis, we plan to address music rearrangement, focusing on instrumentation, by processing waveforms of two-instrument pieces. Previous studies have achieved promising results utilizing time-frequency and symbolic music representations. Music translation on raw audio has also been investigated using single-instrument pieces. Although processing raw audio is more challenging, it embodies more detailed information about the performance, timbre, and dynamics of a music piece. To this end, we introduce Music-STAR, the first audio-based model that can transform the instruments of a multi-track piece into another set of instruments, resulting in a rearranged piece

    Automated Rhythmic Transformation of Drum Recordings

    Get PDF
    Within the creative industries, music information retrieval techniques are now being applied in a variety of music creation and production applications. Audio artists incorporate techniques from music informatics and machine learning (e.g., beat and metre detection) for generative content creation and manipulation systems within the music production setting. Here musicians, desiring a certain sound or aesthetic influenced by the style of artists they admire, may change or replace the rhythmic pattern and sound characteristics (i.e., timbre) of drums in their recordings with those from an idealised recording (e.g., in processes of redrumming and mashup creation). Automated transformation systems for rhythm and timbre can be powerful tools for music producers, allowing them to quickly and easily adjust the different elements of a drum recording to fit the overall style of a song. The aim of this thesis is to develop systems for automated transformation of rhythmic patterns of drum recordings using a subset of techniques from deep learning called deep generative models (DGM) for neural audio synthesis. DGMs such as autoencoders and generative adversarial networks have been shown to be effective for transforming musical signals in a variety of genres as well as for learning the underlying structure of datasets for generation of new audio examples. To this end, modular deep learning-based systems are presented in this thesis with evaluations which measure the extent of the rhythmic modifications generated by different modes of transformation, which include audio style transfer, drum translation and latent space manipulation. The evaluation results underscore both the strengths and constraints of DGMs for transformation of rhythmic patterns as well as neural synthesis of drum sounds within a variety of musical genres. New audio style transfer (AST) functions were specifically designed for mashup-oriented drum recording transformation. The designed loss objectives lowered the computational demands of the AST algorithm and offered rhythmic transformation capabilities which adhere to a larger rhythmic structure of the input to generate music that is both creative and realistic. To extend the transformation possibilities of DGMs, systems based on adversarial autoencoders (AAE) were proposed for drum translation and continuous rhythmic transformation of bar-length patterns. The evaluations which investigated the lower dimensional representations of the latent space of the proposed system based on AAEs with a Gaussian mixture prior (AAE-GM) highlighted the importance of the structure of the disentangled latent distributions of AAE-GM. Furthermore, the proposed system demonstrated improved performance, as evidenced by higher reconstruction metrics, when compared to traditional autoencoder models. This implies that the system can more accurately recreate complex drum sounds, ensuring that the produced rhythmic transformation maintains richness of the source material. For music producers, this means heightened fidelity in drum synthesis and the potential for more expressive and varied drum tracks, enhancing the creativity in music production. This work also enhances neural drum synthesis by introducing a new, diverse dataset of kick, snare, and hi-hat drum samples, along with multiple drum loop datasets for model training and evaluation. Overall, the work in this thesis increased the profile of the field and hopefully will attract more attention and resources to the area, which will help drive future research and development of neural rhythmic transformation systems

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation
    corecore