2,867 research outputs found

    Disentangled Graph Social Recommendation

    Full text link
    Social recommender systems have drawn a lot of attention in many online web services, because of the incorporation of social information between users in improving recommendation results. Despite the significant progress made by existing solutions, we argue that current methods fall short in two limitations: (1) Existing social-aware recommendation models only consider collaborative similarity between items, how to incorporate item-wise semantic relatedness is less explored in current recommendation paradigms. (2) Current social recommender systems neglect the entanglement of the latent factors over heterogeneous relations (e.g., social connections, user-item interactions). Learning the disentangled representations with relation heterogeneity poses great challenge for social recommendation. In this work, we design a Disentangled Graph Neural Network (DGNN) with the integration of latent memory units, which empowers DGNN to maintain factorized representations for heterogeneous types of user and item connections. Additionally, we devise new memory-augmented message propagation and aggregation schemes under the graph neural architecture, allowing us to recursively distill semantic relatedness into the representations of users and items in a fully automatic manner. Extensive experiments on three benchmark datasets verify the effectiveness of our model by achieving great improvement over state-of-the-art recommendation techniques. The source code is publicly available at: https://github.com/HKUDS/DGNN.Comment: Accepted by IEEE ICDE 202

    DisenPOI: Disentangling Sequential and Geographical Influence for Point-of-Interest Recommendation

    Full text link
    Point-of-Interest (POI) recommendation plays a vital role in various location-aware services. It has been observed that POI recommendation is driven by both sequential and geographical influences. However, since there is no annotated label of the dominant influence during recommendation, existing methods tend to entangle these two influences, which may lead to sub-optimal recommendation performance and poor interpretability. In this paper, we address the above challenge by proposing DisenPOI, a novel Disentangled dual-graph framework for POI recommendation, which jointly utilizes sequential and geographical relationships on two separate graphs and disentangles the two influences with self-supervision. The key novelty of our model compared with existing approaches is to extract disentangled representations of both sequential and geographical influences with contrastive learning. To be specific, we construct a geographical graph and a sequential graph based on the check-in sequence of a user. We tailor their propagation schemes to become sequence-/geo-aware to better capture the corresponding influences. Preference proxies are extracted from check-in sequence as pseudo labels for the two influences, which supervise the disentanglement via a contrastive loss. Extensive experiments on three datasets demonstrate the superiority of the proposed model.Comment: Accepted by ACM International Conference on Web Search and Data Mining (WSDM'23

    FMMRec: Fairness-aware Multimodal Recommendation

    Full text link
    Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec

    Causal Disentanglement for Semantics-Aware Intent Learning in Recommendation

    Full text link
    Traditional recommendation models trained on observational interaction data have generated large impacts in a wide range of applications, it faces bias problems that cover users true intent and thus deteriorate the recommendation effectiveness. Existing methods tracks this problem as eliminating bias for the robust recommendation, e.g., by re-weighting training samples or learning disentangled representation. The disentangled representation methods as the state-of-the-art eliminate bias through revealing cause-effect of the bias generation. However, how to design the semantics-aware and unbiased representation for users true intents is largely unexplored. To bridge the gap, we are the first to propose an unbiased and semantics-aware disentanglement learning called CaDSI (Causal Disentanglement for Semantics-Aware Intent Learning) from a causal perspective. Particularly, CaDSI explicitly models the causal relations underlying recommendation task, and thus produces semantics-aware representations via disentangling users true intents aware of specific item context. Moreover, the causal intervention mechanism is designed to eliminate confounding bias stemmed from context information, which further to align the semantics-aware representation with users true intent. Extensive experiments and case studies both validate the robustness and interpretability of our proposed model

    Causal Disentangled Recommendation Against User Preference Shifts

    Full text link
    Recommender systems easily face the issue of user preference shifts. User representations will become out-of-date and lead to inappropriate recommendations if user preference has shifted over time. To solve the issue, existing work focuses on learning robust representations or predicting the shifting pattern. There lacks a comprehensive view to discover the underlying reasons for user preference shifts. To understand the preference shift, we abstract a causal graph to describe the generation procedure of user interaction sequences. Assuming user preference is stable within a short period, we abstract the interaction sequence as a set of chronological environments. From the causal graph, we find that the changes of some unobserved factors (e.g., becoming pregnant) cause preference shifts between environments. Besides, the fine-grained user preference over categories sparsely affects the interactions with different items. Inspired by the causal graph, our key considerations to handle preference shifts lie in modeling the interaction generation procedure by: 1) capturing the preference shifts across environments for accurate preference prediction, and 2) disentangling the sparse influence from user preference to interactions for accurate effect estimation of preference. To this end, we propose a Causal Disentangled Recommendation (CDR) framework, which captures preference shifts via a temporal variational autoencoder and learns the sparse influence from multiple environments. Specifically, an encoder is adopted to infer the unobserved factors from user interactions while a decoder is to model the interaction generation process. Besides, we introduce two learnable matrices to disentangle the sparse influence from user preference to interactions. Lastly, we devise a multi-objective loss to optimize CDR. Extensive experiments on three datasets show the superiority of CDR.Comment: This paper has been accepted for publication in Transactions on Information System

    DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendation

    Full text link
    Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems since it can model rich context information in user-item interactions. Graph neural network is able to encode this rich context information through propagation on the graph. However, existing heterogeneous graph neural networks neglect entanglement of the latent factors stemming from different aspects. Moreover, meta paths in existing approaches are simplified as connecting paths or side information between node pairs, overlooking the rich semantic information in the paths. In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-NN recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network. In particular, we use meta relations to decompose high-order connectivity between node pairs and propose a disentangled embedding propagation layer which can iteratively identify the major aspect of meta relations. Our model aggregates corresponding aspect features from each meta relation for the target user/item. With different layers of embedding propagation, DisenHAN is able to explicitly capture the collaborative filtering effect semantically. Extensive experiments on three real-world datasets show that DisenHAN consistently outperforms state-of-the-art approaches. We further demonstrate the effectiveness and interpretability of the learned disentangled representations via insightful case studies and visualization.Comment: Accepted at CIKM202
    corecore