1,823 research outputs found

    Data-Driven Approach to Simulating Realistic Human Joint Constraints

    Full text link
    Modeling realistic human joint limits is important for applications involving physical human-robot interaction. However, setting appropriate human joint limits is challenging because it is pose-dependent: the range of joint motion varies depending on the positions of other bones. The paper introduces a new technique to accurately simulate human joint limits in physics simulation. We propose to learn an implicit equation to represent the boundary of valid human joint configurations from real human data. The function in the implicit equation is represented by a fully connected neural network whose gradients can be efficiently computed via back-propagation. Using gradients, we can efficiently enforce realistic human joint limits through constraint forces in a physics engine or as constraints in an optimization problem.Comment: To appear at ICRA 2018; 6 pages, 9 figures; for associated video, see https://youtu.be/wzkoE7wCbu

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Learning Contact-Rich Manipulation Skills with Guided Policy Search

    Full text link
    Autonomous learning of object manipulation skills can enable robots to acquire rich behavioral repertoires that scale to the variety of objects found in the real world. However, current motion skill learning methods typically restrict the behavior to a compact, low-dimensional representation, limiting its expressiveness and generality. In this paper, we extend a recently developed policy search method \cite{la-lnnpg-14} and use it to learn a range of dynamic manipulation behaviors with highly general policy representations, without using known models or example demonstrations. Our approach learns a set of trajectories for the desired motion skill by using iteratively refitted time-varying linear models, and then unifies these trajectories into a single control policy that can generalize to new situations. To enable this method to run on a real robot, we introduce several improvements that reduce the sample count and automate parameter selection. We show that our method can acquire fast, fluent behaviors after only minutes of interaction time, and can learn robust controllers for complex tasks, including putting together a toy airplane, stacking tight-fitting lego blocks, placing wooden rings onto tight-fitting pegs, inserting a shoe tree into a shoe, and screwing bottle caps onto bottles

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation

    Muscleless Motor synergies and actions without movements : From Motor neuroscience to cognitive robotics

    Get PDF
    Emerging trends in neurosciences are providing converging evidence that cortical networks in predominantly motor areas are activated in several contexts related to ‘action’ that do not cause any overt movement. Indeed for any complex body, human or embodied robot inhabiting unstructured environments, the dual processes of shaping motor output during action execution and providing the self with information related to feasibility, consequence and understanding of potential actions (of oneself/others) must seamlessly alternate during goal-oriented behaviors, social interactions. While prominent approaches like Optimal Control, Active Inference converge on the role of forward models, they diverge on the underlying computational basis. In this context, revisiting older ideas from motor control like the Equilibrium Point Hypothesis and synergy formation, this article offers an alternative perspective emphasizing the functional role of a ‘plastic, configurable’ internal representation of the body (body-schema) as a critical link enabling the seamless continuum between motor control and imagery. With the central proposition that both “real and imagined” actions are consequences of an internal simulation process achieved though passive goal-oriented animation of the body schema, the computational/neural basis of muscleless motor synergies (and ensuing simulated actions without movements) is explored. The rationale behind this perspective is articulated in the context of several interdisciplinary studies in motor neurosciences (for example, intracranial depth recordings from the parietal cortex, FMRI studies highlighting a shared cortical basis for action ‘execution, imagination and understanding’), animal cognition (in particular, tool-use and neuro-rehabilitation experiments, revealing how coordinated tools are incorporated as an extension to the body schema) and pertinent challenges towards building cognitive robots that can seamlessly “act, interact, anticipate and understand” in unstructured natural living spaces
    corecore